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Abstract

This paper addresses the speedup of the numerical solution of shallow-water systems
in 2D domains by using modern Graphics Processing Units (GPUs). A first order
well-balanced finite volume numerical scheme for 2D shallow water systems is con-
sidered. The potential data parallelism of this method is identified and the scheme
is efficiently implemented on GPUs for one-layer shallow-water systems. Numerical
experiments performed on several GPUs show the high efficiency of the GPU solver
in comparison with a highly optimized implementation of a CPU solver.

Key words: Shallow-water simulation, General Purpose computation on Graphics
Processing Units (GPGPU), High performance scientific computing.

1 Introduction

Our goal is to efficiently simulate one-layer fluids that can be modelled using
a shallow-water system, formulated under the form of a conservation law with
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source terms. The numerical solution of these models is useful for several
applications related to geophysical flows, such as the simulation of rivers,
channels or dambreak problems. However, these simulations impose great de-
mands on computing power due to the dimensions of the domain (space and
time). As a consequence, extremely efficient high performance solvers are re-
quired to solve and analyze these problems in reasonable execution times. An
interesting numerical scheme to simulate shallow water systems and an effi-
cient parallel implementation of this scheme for a PC cluster are presented in
[4]. This parallel implementation of the numerical scheme has been improved
by using SSE-optimized software modules in order to accelerate small matrix
computations at each processing node of the cluster (see [5]). Although these
improvements have made it possible to obtain results in faster computational
times, the simulations still require too much runtime despite the efficient use
of all the resources of a powerful PC cluster.

A currently available cost effective emerging architecture is capable of achie-
ving considerable acceleration of computationally intensive tasks like the one
considered in this paper. Modern Graphics Processing Units (GPUs) are not
only used to render 3D graphics but can also be a cost effective way to speed
up the numerical solution of several mathematical models in science and en-
gineering (see [16,20] for a review of the topic). Modern GPUs offer over 100
processing units optimized for massively performing floating point operations
in parallel with 4-tuples or 4x4 matrices of floating point numbers (also with
smaller tuples and matrices) and floating point operations in general [15]. As a
consequence, for several algorithmic structures, these architectures are able to
obtain a substantially higher performance than can a powerful general purpose

CPU.

In [12], a explicit central-upwind scheme is implemented on a NVIDIA GeForce
7800 GTX card to simulate the one-layer shallow-water system and a speedup
from 15 to 30 is achieved with respect to a CPU implementation running on
an Intel Xeon processor.

We propose a strategy to design an efficient implementation of the numerical
scheme presented in [4] on GPUs using OpenGL [18] and Cg [8]. To do so, it
was necessary to adapt the calculations and the data domain of the numerical
algorithm to the graphics processing pipeline. A utility library was developed,
facilitating the mapping and simplifying the description of the GPU program
as a sequential composition of data parallel modules.

The next section describes the structure of the one-layer shallow-water sys-
tem. Section 3 introduces the underlying numerical scheme. The design and
implementation of the GPU version of the numerical solver is described in Sec-
tion 4. Section 5 presents and analyzes the results obtained when the solver is
applied to several meshes using several GPUs. Finally, Section 6 summarizes



the main conclusions of the work and presents the lines for further work.

2 Mathematical model: One-layer shallow-water system

The one-layer shallow-water system is a system of conservation laws with
source terms which models the flow of a homogeneous fluid shallow layer that
occupies a bounded subdomain D C IR? under the influence of a gravitational
acceleration g. The system has the following form:
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where h(z,y,t) € R denotes the thickness of the water layer at point (z,y) at
time ¢, H(x,y) is the depth function measured from a fixed level of reference
and q(z,y,t) = (q.(2,9,t), ¢,(z,y,t)) € R? is the mass-flow of the water layer
at point (z,y) at time t.

System (1) can be formulated as a particular case of a general problem con-
sisting of a system of conservation laws with source terms as follows:
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Let J;(W) = SW (W), i = 1,2, which denote the Jacobians of the fluxes Fj,

i =1,2. Given a unit vector n = (1, n,) € R?, we define the matrix

AW, m) = Ji(W)n. + Jo(W)n,,

and the vectors

F(W,n) = F1(W)n, + F2(W)77y7 Sn(W) = n:51(W) + 77y52(W)-

The problem consists in studying the time evolution of W (x,y,t) satisfying
System (2).

3 Numerical scheme

In accordance with the description given in [4], this section presents the dis-
cretization of System (2) by means of a Finite Volume scheme. First, the
computational domain D is divided into L discretization cells or finite volu-
mes, V; C R?, which are assumed to be closed polygons (here, the volumes are
assumed to be quadrangles). Let us denote by 7 the set of cells. The following
notation is employed: given a finite volume V;, N; € R? is the centre of Vj, N;
is the set of indexes j such that V; is a neighbour of V;; I';; is the common
edge of two neighbour cells V; and V;, and |I';;| is its length; 9;; = (7)., Mijy)
is the unit vector which is normal to the edge I';; and points towards the cell
V; (see Figure 1).

The approximations to the cell averages of the exact solution produced by the
numerical scheme are denoted as follows:

1
W
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where |V;| is the area of the cell and t" = nAt, with At being the time step
which for the sake of simplicity is assumed to be constant.

Assume that the approximations at time t", W/, have already been calcu-
lated. To advance in time, at any time step, a family of projected Riemann
Problems in the normal direction to each edge of the mesh is considered. These
projected Riemann problems are then linearized by using a path conservative
Roe scheme (see [17], [19]). Finally, the approximated solutions of these 1D
linear Riemann problems are averaged in the cells to obtain the new piecewise



constant approximation of the solution. The resulting numerical scheme is as
follows:
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and where H; = H(N;) with [ = 1,...,L, Ay = AW}, ny) and Sj; =
S (W), with Wi an ‘intermediate state’ between W;* and W7'. The matrix

P;; is computed as follows:
_ 1 -
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where D;; is the diagonal matrix whose coefficients are the eigenvalues of
A;j, and K;; is a matrix whose columns are associated eigenvectors. Finally
sgn(D;;) is the diagonal matrix whose coefficients are the sign of the eigenva-
lues of the matrix A;;.

In the particular case of System (1), A;; and S;; are chosen as follows:
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3.1 Some remarks

(1) Due to the explicit character of the numerical scheme, a C'F'L condition
must be imposed. In practice, the following condition can be used to



compute the n-th time step:
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where v, 0 < v < 1, is the CFL parameter.

The time step computed from this criterion can be small during the
calculations, which means that a large number of time iterations might be
necessary for large time simulations. Although implicit numerical schemes
are known to allow for large time steps, here explicit numerical schemes
are considered for the following reasons:

(a) We are interested not only in reaching steady states but also in the
simulation of fast waves, such as moving shocks or dry/wet fronts
appearing in fluvial or coastal hydraulics.

(b) Explicit schemes impose fewer memory overheads, as complex itera-
tive matrix solvers are not required.

As in the case of systems of conservation laws, when sonic rarefaction
waves appear it is necessary to modify the Approximate Riemann Solver
in order to obtain entropy-satisfying solutions. The Harten-Hyman En-
tropy Fix technique (see [13]) can easily be adapted to this numerical
scheme.
The previous numerical scheme is exactly well-balanced for the steady
solution corresponding to water at rest. A high order extension of the
previous numerical scheme has been presented in [7]. Extensions to purely
non-conservative hyperbolic systems, like the two-layer shallow-water sys-
tem have also been performed (see [5,19]).
If the numerical scheme (4), is applied without modifications to simu-
late one-layer flows in which wet/dry fronts appear, the results are not
satisfactory: the gradient of the bottom function H generates spurious
pressure forces that can make the fluid go up steps or slopes in a nonphys-
ical way. In [1], [2] and [3], some modifications of the numerical scheme
have been proposed to avoid this difficulty.

A more sophisticated high order numerical treatment of the wet-dry
fronts is introduced in [10]; this ensures the positivity of the water depth
at the front as well as the well-balanced properties of the original first-
order scheme.

In this paper, we use the modification proposed in [2]: let us suppose
that an emerging bottom situation such as the one shown in Figure 2
arises at the edge I';;, where h(N;) = 0 and h(N;) < H(N;) — H(N;). In
this case, instead of using (5), F}; is given by:

- T
F; =10,0,0]".

Conversely, in the situation shown in Figure 3, where h(V;) < H(V;) —



H(N;) and h(N;) = 0, F}; is given by:
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In other cases, F; is still given by (5). In [2] it was shown that this
modified numerical scheme exactly solves stationary solutions correspon-

ding to water at rest including wet/dry transitions.

4 Obtaining a GPU implementation

To derive an efficient GPU implementation of the numerical scheme, several
stages of a methodical approach are completed. This approach may be applied
to obtain GPU implementations in other areas of scientific computing and
includes the following actions:

e Data Parallelism identification:

From a general point of view, a GPU works by applying the same calcula-
tion on a set of input data items to produce a set of output data items. This
calculation is usually called a kernel [16]. Since a GPU computes bundles of
data items in parallel, the calculation for each data item need not depend
on the output data obtained for other data items. Therefore a GPU makes
it possible to exploit the data parallelism [14], that results from concurrently
applying identical operations on different data items. Consequently, a data
parallel programming model is implemented to efficiently exploit a GPU.
In the data parallel programming model, the computation must be orga-
nized in computing phases in each of which a high degree of potential data
parallelism is exhibited. The data which is managed in each phase may be
different but each phase must be described as the application of the same
operations to each data item simultaneously.

Taking this into account, we must now identify the sources of data para-
llelism in the numerical scheme to be implemented, stablishing which calcu-
lations can be made in a data parallel style. Then, each of these calculations
must be described as parallel computations and combined sequentially to
obtain a data parallel algorithm (see Figure 4).

e Design of the data storage scheme to maximize the data locality.

In a GPU, each processing element has a small cache memory. In order
to preserve effective high arithmetical intensity and obtain good perfor-
mance, the data stored in this memory must be accessed frequently and



data accessing to a slower memory must be minimized. This goal is re-
quired in order to obtain a high data locality and involves performing many
more accesses to fast memory than to slow memory. To achieve this, it is
fundamental to arrange data items in floating point 2D GPU memory ar-
rays in such a way that the computation associated to a data item can be
performed by only accessing input data items located in contiguous posi-
tions in the texture. In order to choose a data storage which preserves the
locality, the data access pattern of each computing phase must be analyzed.
Subsection 4.2 describes an efficient storage scheme to perform this on a
GPU platform.

e Description of the data parallel modules for each computing phase.

In many cases the whole computational process has to be divided into
several steps, which is useful in terms of both design clarity and efficiency.
For each computing step a kernel is created and a GPU processing module is
associated to each kernel. Each of these modules uses some data as input and
produces an output which may be either the final result or an intermediate
one to be used by the next module. When GPUs are used, the need to
divide the process into several steps is often a requirement imposed by the
architecture because the platform limits the number of results that can be
produced within a single computing step.

e Module composition.

As the computational process is divided into steps, a CPU driver program
is required. This program performs the initialization required by the GPU,
binds the data stored on RAM with the parameters of each kernel (this
requires the data to be transferred to the GPU memory) and starts the
computation of each GPU module.

The use of these stages to derive an efficient GPU implementation of the
method described in Section 3 is explained in the following subsections.

4.1 Deriving a data parallel numerical algorithm

A data parallel algorithm was designed on the basis of the mathematical des-
cription of the numerical scheme. Figure 4 shows a graphical description of the
parallel numerical algorithm. In this figure, the main calculation phases are
identified with circled numbers and the main sources of data parallelism are
clearly indicated. A Parfor each <data_item> block denotes that the calcu-
lation affected by it can be performed simultaneously for each data item of a
set (in this algorithm, the data items can represent the volumes or the edges
of the mesh). The arrows connecting two computing phases represent data
dependences between the two phases.

Initially, the finite volume mesh must be constructed from the input data



with the appropriate setting of initial and boundary conditions. Then the
time stepping process is repeated until the final simulation time is reached.
At the (n + 1)-th time step, Equation (4) must be evaluated to update the
state of each cell. Of course, the data computed at the (n + 1)-th time step
does present a degree of dependence on the previous one, but this does not
restrict the parallelization of the computations performed at a particular time
step. In fact, the four main calculation phases of the evaluation present a high
degree of parallelism and must be completed consecutively, as follows:

(1) Edge-based calculations: Two calculations must be performed for each
edge I';; communicating two cells V; and V; (4,5 € {1,...,L}):

a) Vector M;; =| I';; | F; € IR® must be computed as the contribution of
each edge to the sum associated to the corresponding neighbour cells V;
and V; (see Equation (4)). This contribution can be computed indepen-
dently for each edge and must be added to the partial sums associated
to each cell (M; and M;). This is the most costly calculation in the
numerical algorithm because it includes several 3 x 3 matrix computa-
tions (inversion, matrix-matrix product, matrix-vector product, etc.).
Moreover, since only the data corresponding to the volumes V; and V;
are needed to compute the contribution for one particular edge I';;, this
computation presents a high arithmetic intensity and locality.

b) The value At;; =| I'y; ||| D || must be computed and added to the
partial sums associated to each cell (At; and At;) as an intermediate
step to compute the n-th time step At™ (see Equation (8)).

Both calculations for an edge can be computed simultaneously with
respect to the calculations associated to other edges.

(2) Computation of the local At for each volume: For each volume V;,
the value of At; is modified to compute the local At per volume according
to Equation (8). In the same way, the computation for each volume can
be performed in parallel.

(3) Computation of At": The minimum of all the local At values previ-
ously obtained for each volume must be computed. This phase can also
be parallelized if the minimum is calculated following a recursive decom-
position approach [14].

(4) Computation of W/ ™: The (n + 1)-th state of each volume (W)
must be approximated from the n-th state using the data computed in
the previous phases. This phase can also be completed in parallel (see
Figure 4).

Let us note the following, from the description of the parallel algorithm:

a) the computation steps required by the problem presented in this paper can
be classified into two groups: the computation associated to edges and the
computation associated to volumes;

b) the scheme presents a high level of arithmetic intensity and the computation



exhibits a high degree of locality, because the computation for each edge or
volume only depends on the data from adjacent volumes;

c¢) the scheme exhibits a high degree of potential data parallelism (see Figure
4) because the computation at each edge or volume is independent with
respect to that performed or associated to the other edges or volumes.

Thus, this problem seems suitable for implementation on modern GPUs. In
the numerical scheme presented, the volume state is represented by a 3-tuple
and all the operations involve operations between 3-tuples and 3x3 matrices
which makes it even more suited for a GPU-based computing platform. The
only drawback of using GPUs is the need to adapt the computational process
to the graphics processing pipeline and to perform some mappings between
the problem domain and this pipeline.

4.2 Data storage and arrangement in the GPU

In computer graphics most of the data is represented by 3 or 4-tuples (float3
and float4 data types in the Cg language [8]) to denote points and vectors.
Transformations are usually represented by 3 x 3 or 4 x 4 matrices. These
matrices are multiplied to obtain the composition of different transformations
and vectors and the points are multiplied by these matrices to apply the
transformations. Therefore these types of data storage and operations are
highly optimized on graphics hardware.

There is another type of data which is commonly used: textures. A 2D texture
allows the storage of n x m floating point 4-tuples and is mainly used (in
graphics applications) to store colours representing an image to be applied to
a 3D object.

The aforementioned mechanisms enable the storage and representation of the
data required by the numerical solver. In fact, the most important data about
volumes and edges must be stored as 2D textures.

4.2.1  Volume-based information textures

Volumes require the storage of both the data which remains constant during
the computation, and the data related to the current and the next state.

e The constant data for the i-th volume V; (i = 1,..., L) is the following:

(1) The evaluation of the depth function for the volume (H;).

(2) The area of the volume (|V;]).

(3) The information about the orientation of the normal vector associated to
each edge of the volume.

10



(4) An indication as to whether the volume is a ghost volume (ghost volumes
are fictitious cells which are only used to impose the boundary conditions,
see subsection below for a more detailed description).

This data can be packed in a vector of 4 floating point numbers (float4
data type): one floating point value for H;, one for |V;|, one for the nor-
mal orientation information and one to mark ghost volumes (see Figure
6). The penultimate term requires some additional explanation about how
the orientation of the normals has been coded into a floating point value.
Basically the above mentioned floating point number which represents the
orientations of the normal vectors, is treated as an integer value and the
orientation of the vectors is obtained by evaluating the value of its four
least significant bits. A value of 1 corresponds to the normal vector point-
ing towards the exterior of the volume. The mapping between the bits and
edges is shown in Figure ba.

These 4-tuples are stored in a n xm texture where nxm is at least equal to
the number of volumes, including several ghost volumes (see Figure 6). This
texture is a rectangular matrix where each position contains a 4-tuple and
is associated to a volume (wether a ghost or not). The volumes are arranged
in the texture following the column-major ordering. This numbering scheme
means that the i-th volume (bearing in mind that the ghost volumes must
also be numbered), is accessed using its 2D coordinates (u,v) inside the
n X m texture, with:

o= o2 [3])

Figure 6 shows this ordering for a 2 x 2 mesh where the final mesh has 4 x 4
cells because the corresponding ghost cells have been included.

e The volume state data include 3 floating point values. Each W vector
represents the state of the i-th volume at the n-th time step. These data
are stored in another texture with an identical numbering scheme as the

constant volume-based texture (see Figure 6).

With this arrangement for the volume information, the data associated to
neighbour finite volumes is stored in contiguous positions in the 2D volume-
based textures. As a consequence, the data locality is enhanced.

4.2.2  Ghost cells

As it has been mentioned above, constant data for each cell or volume includes
an indication (a logic value) with information about whether the cell is a ghost
cell or not. These ghost cells are used to impose the boundary conditions. We
have tested our current implementation on rectangular domains, and we have
used ghost cells for boundary rows and columns (the first and last row and
column).

11



The GPU is responsible for allocating available hardware processors to kernel
instances, in such a way that the hardware is efficiently used, because as
soon as a processor ends running a kernel instance, it is assigned to other
data items, thus no processor is idle while the whole computation step has
not been finished (that is, while not all cells have been processed). During
a computation step, this processor to cell assignment is done once for every
cell, including ghost cells. In order to take into account these ghost cells, the
kernel must be extended with a check at its beginning. In this check, the above
mentioned ghost cell indicator is read. If it is active (that is, if the cell is a
ghost cell), then a special cancel instruction is executed, and a constant value
(or no output value) is written to the output matrix. This instruction tells the
control hardware that the kernel instance has ended the computation for this
cell.

By using that scheme, almost no computation time is devoted to ghost cells,
because a processor assigned to a ghost cell is quickly switched to another one
by the control hardware in the GPU. As a result almost all computing time
in each step will be employed in non-ghost cells which belong to the original
domain. Assuming that the total number of cells is big as compared to the
available number of processors, as is usually the case, the fraction of time
employed in ghost cells will be very small.

The can also be used to model a domain with non-rectangular boundaries. In
this case, the domain is also composed of rectangular cells in a grid, however
additional padding ghost cells are added around the initial domain cells, in
order to embed the original non rectangular domain in a rectangular matrix,
which can be easily mapped into GPU textures as usual.

4.2.83  FEdge-based information texture

The information about an edge, I', that must be stored is: the normal vector
2D coordinates, (7,,7,), its length, |I'|, and a value that indicates whether
or not the edge is a boundary edge or not. Again, this information can be
represented by a rectangular texture of 4-tuples. The fourth number is set to
be positive on edges which are at the boundary of the volume mesh.

The edge information texture has the same number of rows as a volume-based
texture, but more columns because the number of edges is greater. At each
row, for each volume, from left to right, the information on the left, top and
right edge of each volume is stored (in this order). This means a row of the
edge texture takes the form of the following sequence (see figure 6):

left_edge0, top_edgel, right_edge0, left_edgel, top_edgel,

12



To perform several computations associated to the i-th volume whose state
is stored at position (u,v) of the volume state texture, we must access infor-
mation about its edges. This information is stored in the edge-based texture
with the coordinates which are graphically shown in Figure 5b and which
corresponds to the neighbour cells in the edge-based texture (see Figure 7).

With this numbering scheme (for arranging data about volumes and edges),
the most costly calculations of the numerical scheme can be performed on the
GPU exhibiting a high degree of data locality because all the data necessary
to compute a value associated to a volume or an edge is located in contiguous
2D coordinates.

4.8  Mapping the computing phases to the GPU

The programmable computational steps on a GPU based system correspond
to vertex and fragment (potential pixels) processing. The processing units
associated to fragments have traditionally been faster but this is not the case
with modern GPUs. The computational units associated to edges and volumes
are achieved by creating either a vertex or a fragment associated to each
edge/volume and by drawing them. The computational process is performed
by assigning the corresponding input data and the processing code to these
elements and by drawing them.

In this article, the traditional approach of drawing a full screen rectangle
with a 1 to 1 relation of fragments and edges or volumes (depending on the
computing phase) has been adopted. Thus, one fragment per edge or volume
is drawn, and so the code associated to each edge or volume can be run by
the GPU. By assigning the correct texture coordinates, each fragment will be
able to access the data stored in the above mentioned textures. The texture
coordinates of each fragment are exactly those of the associated volume or
edge in the corresponding textures.

Figure 7 shows the computing scheme at each fragment. In this example each
fragment performs a computation associated to a volume, accessing both the
data related to its four corresponding edges and the data related to the volume
itself. All fragments, using the same code, compute a RGB (three floating point
numbers representing the Red, Green and Blue components of a colour) value
in parallel which is the new state of each volume. In this case, the RGB floating
point numbers do not represent a colour but, rather, the values involved in
the computation explained here.

Figure 8 shows the computing phases performed on the GPU and the com-
munication points between the CPU and the GPU. Each GPU computing
phase, except the minimum computation, must be performed in a data para-
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llel fashion following a fragment shader written in Cg [8]. The same Cg code
is applied to each fragment (volume or edge-based) and other textures can be
accessed to obtain input data. These computing phases are as follows:

1. Edge-based calculations: this phase requires the use of the Multiple
Rendering Target capabilities of the GPUs [18,20]. This makes it possible to
output more than one 4-tuple (colour) at one rendering step and increases the
arithmetical intensity of the process; otherwise, these results would have to
be computed in three steps which would have a negative impact on efficiency.
As a result of this phase, two volume-based textures (one 4-tuple per volume)
must be generated: one to store the M; values for each volume and one to
store the At; values.

2. Computation of the local At for each volume: to do this, a per-volume
fragment shader (one fragment per volume is processed) is invoked to compute
the texture which stores the At; values (i =1,...,L).

3. Computation of At": this is a reduction operation which is more compli-
cated to implement on GPUs than on other parallel architectures. However the
procedure is based on a recursive decomposition of the minimum, as described
in subsection 4.3.1.

4. Computation of W/™: as before, a per-volume fragment shader, perfor-
ming the calculation described in phase (4) of Figure 4, must also be invoked
to compute the new volume state texture.

5. Update ghost volumes: the state of each ghost volume is obtained from
adjacent volumes to impose the corresponding boundary conditions. For in-
stance, to impose wall boundary conditions (q - = 0), for each ghost cell V,
its state is set to (hg,0,0)T, where hy, is obtained from the state of the non
ghost cell Vj, which neighbours V.

4.3.1  Minimum computation in the GPU

The term uniform stream reduction (or simply stream reduction, SR below) is
used to describe an algorithm or processing step which computes a single floa-
ting point value from a large vector of floating point values. Typical operations
which fall in this category are the computation of the minimum, maximum or
sum of the elements of such a vector, or other associative operations. SR func-
tionality has been implemented in the system described here, as the minimum
of a texture must be computed.

The fact that these operations are associative enables efficient parallel schemes
to be implemented, as different parts of the input data set can be processed
independently. In the context of GPUs, it has been shown that it is efficient
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to make each fragment shader work on a 2 x 2 block of adjacent data elements
(each element being a 4-float tuple) and to compute a single resulting tuple
from those (with the minimum, maximum, sum, etc. of the input tuples). This
operation is included in a multistage algorithm. At each stage, a texture with
2% x 2F tuples is processed by 2¢~! x 28! independently running instances of
a fragment shader, yielding an output texture with 2¥=1 x 2*=! tuples, which
is used in turn as the input for the next step. The process ends with a 1 x 1
texture, containing a single 4-float tuple from which the final result is obtained.
If the input texture size is n = 2™ x 2™, obviously the algorithm performs
m = log,(n) steps, each one comprising at most n basic operations. Thus, the
algorithmic complexity is O(n log(n)), and at each step, all available fragment
shaders processors can be used in parallel, as desired.

4.4 Building the final CPU-GPU program

The CPU runs a driver program which initializes the GPU textures and con-
trols the finalization of the time stepping process while the GPU runs the main
calculation phases (see Figure 8). The driver program is based on a software
layer that hides many details about the graphics API (Application Program-
ming Interface) and allows the programmer to concentrate on describing the
computational phases of the numerical algorithm.

4.4.1 A software layer to improve programmability

The C++ implementation of the shallow-water simulation program makes
use of a set of classes which allow some degree of abstraction concerning the
underlying Cg code. As the Cg structure is graphics oriented, it is some-
times cumbersome to map general purpose computation schemes onto this
graphics-oriented API. Thus, the need has been identified for an abstraction
layer making it possible to easily express general-purpose computing concepts
in a C4++ program, and hiding, as far as possible, the Cg details from the
programmer, thus leading to a shorter, more readable, modifiable and robust
code. It is necessary to take into account the joint GPU-CPU working scheme,
whereby every GPU kernel must be initiated by an appropriate CPU com-
mand, and though which all data stored in the GPU (except the intermediate
results) must be transferred between GPU and the CPU using explicit CPU
commands.

The design pattern thus implemented comprises two main categories of enti-
ties: on the one hand, the data (two-dimensional arrays) and, on the other,
the computations acting on that data (for instance, reductions). Each type of
entity leads to a C++ class.
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The main data structure used is a two dimensional array of 4-float tuples
(henceforth, called simply arrays), which can be identified with a stream. Va-
rious data related classes have been designed: thus, there is one class for RAM
arrays (named RAMArray2D), which is a class whose instances encapsulate an
array stored in RAM, and another one for arrays stored in the GPUs (named
GPUArray2D). GPU array class instances hold a Cg handler for an array (a tex-
ture) stored in the GPU memory. Straightforward methods are provided for
creating, destroying and accessing the 4-float tuples for both types of arrays.
The programmer is also provided with the means to transfer arrays between
the CPU and the GPU. Additionally, we have found it useful to design a class
for a set of equally-sized arrays stored in GPU memory (MRTGPUArray2D), as
this abstraction allows us to make use of the Cg capabilities for using kernels
writing results on more than one output array (a capability often described
as Multiple Rendering Targets).

Regarding computation, the key idea is that, for each type of operation acting
on GPU arrays, an associated C++ procedural class should be designed. This
class should include methods for transparently creating and destroying any in-
termediate GPU array, as needed, and should also include methods for starting
a computation by running the appropriate kernels (which obviously requires
sending parameters to the GPU and naming both the input and the output
GPU arrays). All the Cg details involved are hidden from the programmer
using the library: any intermediate array needed is created within the con-
structor. Running the entire computation merely requires a call to the appro-
priate method for a correctly built instance of the procedural class. These
C++ method parameters include any such that may be needed for the com-
putation (this typically includes scalar values or small vectors, and pointers
to input GPU arrays). As a result of this call, a new GPUArray2D instance (or
a set of them, if the MRTGPUArray2D is used) is returned to the programmer.

Following this design pattern, we have implemented procedural classes for
carrying out uniform stream reduction (class GPUReductor). Any other com-
putation comprising kernels running on GPU arrays can be fitted into this
scheme. The pattern allows the programmer to easily reuse any intermedi-
ate stream space in GPU memory for multiple computations, saving memory
and stream creation time. This is easily done because, as stated above, the
intermediate arrays are encapsulated within the procedural class instances.

The software component thus created allows for any required initialization of
Cg, OpenGL [18], GLUT [18] and related libraries. It also includes auxiliary
functions for loading, compiling and running Cg fragment shaders, and for
setting their parameters. As a result, using this pattern leads to more easily
modifiable, reusable and robust GPU computation programs. Moreover, we
believe this pattern also enables an easier transition to other more modern
software architectures for GPU programming, such as CUDA [9], because Cg
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related issues are properly isolated from concepts related to the organization
of the computation.

Code extract 6.1 shows a part of the initialization phase. First two fragment
shaders are loaded and compiled by giving the file where each fragment shader
is stored as a parameter. In the next step four GPUArray2D objects are created.
They are created from a regular CPU array (called nodes in this example),
with two numerical values which represent the horizontal and vertical size and
a string used as a name. At the end of the code, a MRTGPUArray2D (Multiple
Rendering Target GPUArray2D) object is created. This object provides the
same functionality as a GPUArray2D but can have up to 4 textures attached.
This makes it possible to run fragment shaders that produce up to 4 different
4-tuples per fragment.

Code extract 6.2 shows a part of the driver program, using the above men-
tioned abstraction layer. In the first part, the computation associated to edges
is run. This basically involves binding or activating the precompiled fragment
shader, setting the parameters to be passed to the fragment shader and letting
the computation start by using the DrawQuad method associated to the output
texture(s).

The computation associated to the edges produces three results per frag-
ment and is therefore run using the above mentioned MRTGPUArray2D object.
The computation related to the local At value is performed using a regular
GPUArray2D.

It can also be seen that the following two methods for setting the parameter
values of the fragment shaders are used. One is used for the texture parameters
and the other is for the floating point parameters:

e BindAndEnableTextureParam
e BindAndEnableFloatParam

Finally code extract 6.3 shows the header of the fragment shader associated
to the edge-based computation. The names of the parameters used in code 6.2
have a one to one relationship with the parameters of this header.

5 Numerical Experiments

We have considered two different test problems to show the efficiency and ac-
curacy of the GPU solver. This GPU implementation has been run on three

NVIDIA GeForce cards: GTX 280, 8800 Ultra and 8400M GS (laptop) asso-
ciated to CPUs of similar performance through a PCl-express port. This im-
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plementation is based on the previously described software layer (see 4.4.1)
together with several fragment shaders written in Cg language.

In order to perform comparisons with a CPU platform, we have used a CPU
implementation of the numerical scheme which has been run on an Intel Xeon
Nocona 2.66 Ghz. This CPU solver has been optimized to exploit the SSE
CPU units through the use of the Intel Performance Primitives 4.1 (see [5])
and has been compiled with an Intel C4++ compiler with em64t extension
using the choice -O2.

5.1 Test 1

We have considered a problem of an unsteady flow in a 1 m x 10 m rectan-
gular channel with a depth function H(x,y) =1 — cos(27wz)/2 and the initial
condition is given by W2(z,y) = [h(x,y),0,0]", where:

H(x,y)+2if x <5,
W)= 4 1Y)
H(z,y) other case.
Six uniform meshes of the domain, QQx, k = 0,...,5, are constructed such

that the number of volumes of mesh @y, is given by 2% -10%, k=0,...,5.

The numerical scheme is run in the time interval [0, 5] except for mesh Q;
which is solved for the time interval [0,0.1]. The CFL parameter is v = 0.9
and wall boundary conditions are considered (q-n = 0). Table 1 shows the
execution times for the meshes considered on several platforms. Figure 10
shows the evolution of the speedup obtained when the GPU is used with
respect to the optimized CPU solver when the problem size is increased. The
results show that drastic performace benefits can be obtained by efficiently
using GPUs as a computing platforms. In fact, a speedup greater than 100
is achieved on both, the GF GTX 280 and the GF 8800 Ultra for meshes of
practical interest, and even a video card embedded in a laptop, the NV GF
8400GM, allows us to obtain a speedup greater than 4.

Using the considered meshes, we have also performed several numerical ex-
periments to study the effects of the single precision arithmetic of the GPU
on the numerical solution. These experiments do not reveal significant diffe-
rences between the approximations obtained with a CPU double precision
implementation and those obtained with our GPU solver.
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5.2 Test 2. Wet/dry front simulation

In this subsection we present a test proposed by Galloiiet in [11], based on a

numerical test initially proposed by E. Toro in [21]. The purpose of this test is

to study the robustness and the efficiency of the numerical scheme considered

here when wet/dry fronts appear over a non-flat bottom topography. Let us

consider a 25 m x 5 m rectangular channel channel with bottom topography

given by

9 ifr>Zandzr< 2,

H(z,y) = ’ ’
10 otherwise.

with initial conditions

o -350 if z < 2,
R (z,y) = H(z,y), q(z,y)=0, ¢(z,y)=
350 otherwise.

The test consists on two supercritical waves with instantly separate the water
column at line x = 53—0 and produce a vacuum. The wave travelling to the left
presents a shock in the water surface, produced by the presence of the bump
(see figure 12). Next the left travelling wave interacts with the step, producing

also a vacuum over it (see figure 12).

Five uniform meshes of the domain, @), k =0,...,4, are constructed such
that the number of volumes of mesh Qy, is given by 2% -3125, k=0,...,4.

The numerical scheme is run in the time interval [0, 0.65]. The CFL parameter
is set to v = 0.8 and wall boundary conditions are considered (q-n = 0) at
the lateral wall, and free boundary conditions at the open boundaries.

Table 2 shows the execution times for the meshes considered on several plat-
forms and Figure 11 shows the evolution of the speedup obtained with respect
to the optimized CPU solver. As can be seen, although the speedup values
with respect to the CPU solver for medium-size problems are also consider-
able, they are less high than the values obtained in Test 1. This is because
this test contains states with totally dry cells. While in the CPU solver, these
cells require less computing cost than the rest of cells, in the GPU solver all
the cells require the same computing cost (due to the restrictions of the GPU
computing model).

Figures 12 and 13 show the computed free surface over the mesh (s at a
longitudinal cut of the channel at y = 2.5 for both, GPU (line with circles)
and CPU (line with '+’) implementations. A 1D reference solution is computed
using a 1D high order solver described in [10] over a uniform mesh composed
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with 2000 cells. As in the previous test, no significant differences between the
GPU and CPU implementation are observed: only small differences close to
the wet/dry front can be observed. The main differences with respect to the
reference solution are due to the use of a high order numerical scheme, while
the numerical scheme considered here is only first order.

It is important to note that to obtain speedups similar to that obtained with
the NVIDIA GF GTX 280 and the NVIDIA GF 8800 Ultra cards on a con-
ventional multiprocessor platform, we would need a high number of processors
and, as a consequence, a much higher investment would be required.

6 Conclusions and Further Work

An efficient first-order well-balanced finite volume solver for one layer shallow-
water systems, capable of efficiently exploiting the parallel processing power
of graphics processing units, has been derived. The solver has been developed
by following several stages of a methodical approach and its implementation is
based on an abstraction software layer which hides many problematic details
of the Graphics API. Simulations carried out on an NVIDIA GeForce GTX
280 GPU were found to be up to two orders of magnitude faster than an
SSE-optimized CPU version of the solver for medium-size uniform problems.
These simulations also show that the numerical solutions obtained with the
proposed solver are accurate enough for practical applications.

As further work, the following lines are being considered:

e Extending the strategy to enable efficient simulations on irregular and non-
structured finite volume meshes and to address the simulation of two-layer
shallow-water systems.

e Developing efficient high order solvers for GPUs [6].

e Using a cluster of CPU-GPUs to enable the fast simulation of realistic large
domains with very fine meshes.

Regarding the first point above, and as it has been detailed in the previous
sections, the simulation method assumes a rectangular cell grid as computa-
tional base and this schema can be mapped very efficiently on modern GPUs.
There might be of course simulation environments where the water stream
bed might not have a rectangular shape. These cases would not require any
important change in our implementation as any cell can be marked as bound-
ary (or ghost), letting the stream boundary have an arbitrary shape. In this
case, the boundary cell would be recognized by a numerical value (there are
unused values in the cell state data) instead of by its grid indices. Finally, as
the data used by the GPU must have a rectangular shape, some padding cells

20



would probably have to be added. These cells could be marked as not required
and the computation associated to them would be only a discard operation
witch makes the GPU skip to the next fragment.
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Table 1

Qk X teng || CPU | GT X280 | 8800U | 8400MGS
Qo x 5.0 1.05 0.347 0.53 2.25
Q1 x 5.0 8.09 0.748 1.11 6.4
Q2 x 5.0 || 64.23 1.78 2.6 24.7
Q3 x 5.0 || 510.6 5.25 8.13 140
Q4 % 5.0 4046 23.85 38.96 998.6
Qs x 0.1 661 3.07 5.3 152.2
Test 1. Execution times for several meshes and GPUs.
Qr CPU | GTX280 | 800U | 8400MGS
Qo 0.61 0.11 0.11 0.72
Q1 4.66 0.27 0.29 3.1
Q- 38.12 0.72 0.9 15.12
Q3 303.55 2.87 4.24 97.87
Q4 || 2512.53 17.1 27.83 737.97

Table 2

Test 2. Execution times for several meshes and GPUs.
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// Compile prepare the Cg kernels for later use

edgeFS = LoadAndBindProgram (”EdgeFS.cg” ,”main” );
nodeFS = LoadAndBindProgram (”NodeFS.cg” ,” main” );

// Create and initialize the arrays with data associated

// to nodes

// We need 2 arrays to store the wvolume state data as we need
// information about the current and next state

nodeState [0] = new GPUArray2D(nodes ,sizex ,sizey ,
”"NodeState0” );
nodeState[1] = new GPUArray2D(nodes ,sizex ,sizey ,

”"NodeStatel” );
nodesConstants= new GPUArray2D(nodesConstants, sizex ,sizey ,
”"NodeConstantData” );
new GPUArray2D(nodes ,sizex ,sizey ,
”LocalDeltaT” );

deltaT

// Create and initialize the arrays with data
// associated to edges

edgeConstants=new GPUArray2D(edges , edge_sizex ,edge_sizey ,
"EdgeData” );

// Create a MRTGPUArray that is able to hold up to 4 textures
// allowing to hold the results generated by MRT kernels

// In this example all these arrays are initilized

//  with the same data as it will get overwritten anyway

mrt=new MRTGPUArray2D (3 ,edge_sizex ,edge_sizey ,”MRI”);
mrt—>AddArray(edges );
mrt—>AddArray (edges );
mrt—>AddArray(edges );

Code 6.1. Extract of the driver program initialization phase
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// Start computation at the edges
BindFragmentShader (edgeFS );
// Bind parameters of the kernel

nodeState [state]—>BindAndEnableTextureParam(edgeFS,” nodes” );
edgeConstants —>BindAndEnableTextureParam (edgeFS ,” edges” );
nodesConstants —>BindAndEnableTextureParam(edgeFS,” nConstants” );
BindAndEnableFloatParam (edgeFS , edge_sizex ,” sizex”);
BindAndEnableFloatParam (edgeFS , edge_sizey ,” sizey” );

// Run active Cg program for each fragment.
// One fragment per position of the output array (mrt)
//  will be created

mrt—>DrawQuad () ;

// Start computation local deltaT
BindFragmentShader (nodeFS);

// Bind parameters of the kernel
nodeState [state]—->BindAndEnableTextureParam(nodeFS,” nodes” );
nodesConstants —>BindAndEnableTextureParam(nodeFS,” nConstants” );

// Bind the 3rd texture of the MRT array

mrt—>BindAndEnableTextureParam(nodeFS,” precalc” ,2);
BindAndEnableFloatParam (nodeFS , gamma, ”gamma” ) ;
BindAndEnableFloatParam (nodeFS , sizex ,” sizex” );
BindAndEnableFloatParam (nodeFS , sizey ,” sizey” );

// Run active Cg program for each fragment.
// One fragment per position of the output array (deltaT)
//  will be created

deltaT —>DrawQuad () ;

Code 6.2. Extract of the driver program computing phase
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void main

(

}

uniform samplerRECT nodes,
uniform samplerRECT edges,
uniform samplerRECT nConstans,
uniform float sizex ,

uniform float sizey ,

float2 coords : TEXCOORDO,

out float3 fplus: COLORO,
out float3 fminus: COLORI,
out float3 precalc: COLOR2)

//Fragment shader code

//Node state information

//Edge information

//Node constant information
//Horizontal size of the texture
// Vertical size of texture
//Edge coordinates

//F+

/P

//This wvalue will be used to

// compute DeltaT at the nodes

Code 6.3. Extract of a fragment shader
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Fig. 4. Main calculation phases in the parallel algorithm
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Fig. 10. Test 1. Speedup obtained with respect the CPU code.
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