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Abstract

A flexible parallel deterministic solver of the Boltzmann-Poisson system for 2D

semiconductor device simulation on computer clusters is presented. The simulator

is obtained by parallelizing a previously proposed numerical scheme based on high

order finite difference Weighted Essentially Non-Oscillatory (WENO) schemes. Al-

though the underlying numerical scheme presents important advantages over Direct

Simulation Monte Carlo methods, this scheme imposes very high demands of com-

puting power. Due to this, the parallelization of the different calculation phases in

the numerical scheme has been tackled. The data subdomain which demands most
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of the computational workload has been suitably distributed among the processors

and several parallel design decisions has been taken in order to achieve good per-

formance. Moreover, the resultant parallel application can be easily adjusted to

simulate a wide range of devices and could be easily used by engineers without

mathematical background about the underlying numerical scheme. The parallel al-

gorithm has been implemented in C++ augmented with calls to MPI functions and

functions of optimized linear algebra libraries. Several experiments have been per-

formed by simulating particular MOSFET and DG-MOSFET devices on a SMP

cluster in order to show its efficiency.

Key words: semiconductor simulation, parallel numerical algorithms, finite

difference weighted essentially non-oscillatory schemes, high performance cluster

computing

1 Introduction

The computer simulation of semiconductor devices is an important area in the

computer aided design of electronic circuits. The electron transport in these

devices, at a mesoscopic level, can be modeled by the Boltzmann Transport

Equation (BTE) for semiconductors in the semi-classical approximation:

∂f

∂t
+

1

~
∇kε · ∇xf − e

~
E · ∇kf = Q(f), (1)

where f represents the electron probability density function (pdf) in phase

space k at the physical location x and time t. Physical constants ~ and e

denote the Planck constant divided by 2π and the positive electric charge,

respectively. The energy-band function ε is given by the Kane non-parabolic
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band model, which is a non-negative continuous function of the form:

ε(k) =
1

1 +

√

1 + 2
α̃

m∗
~

2 |k|2
~

2

m∗
|k|2 , (2)

where m∗ is the effective mass and α̃ is the non parabolicity factor.

The right-hand side of Equation (1) models the interaction of electrons with

lattice vibrations of the crystal and is written as

Q(f)(t,x,k) =
∫

IR3

[S(k′,k)f(t,x,k′) − S(k,k′)f(t,x,k)] dk′ , (3)

where S(k,k′) is the transition probability from state k to k′ per unit of time

for each scattering mechanism. Therefore, the collision term Q(f) depends on

the semiconductor material by means of the different scattering mechanisms

which are considered. Interactions between electrons are not directly included

in the right hand side since we consider low probability densities and the

quadratic terms can be neglected. However, we take into account the electro-

statics produced by the electrons and the dopants in the semiconductor, since

the electric field is selfconsistently computed by the Poisson equation:

∇x [ǫr(x)∇xV ] =
e

ǫ0

[ρ(t,x) − ND(x)] , E = −∇xV (4)

where ǫ0 is used to denote the dielectric constant in a vacuum, ǫr(x) represents

the relative dielectric function dependent on the material (which could be

different depending on the position x), ND(x) is the doping profile, V is the

electric potential and ρ(t,x) =
∫

IR3

f(t,x,k) dk is the electron density.

Equations (1)-(4) are called the Boltzmann-Poisson system for electron trans-

port in semiconductors.
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The main numerical tools which are used in practice by electronic engineers to

simulate this Boltzmann-Poisson system have been based on Direct Simulation

Monte Carlo (DSMC) approach. However, this approach presents some draw-

backs: a) presence of noise in the numerical solution, b) it does not show the

evolution of the distribution density until the stationary state and therefore it

does not capture all the moments which someone could need, and, c) it does

not approximate almost empty regions in the device since there are not enough

particles to obtain acceptable statistics. These disadvantages do not appear in

deterministic simulations for the full Boltzmann-Poisson system. However, the

main problem to simulate directly the Boltzmann-Poisson system is the fact

that the system has 7 dimensions (6 space-momentum variables and time),

which produces numerical simulations with high demands for computational

power. To overcome this problem, several approximated systems and corres-

ponding deterministic numerical methods have been proposed in literature

(see the review about deterministic kinetic solvers for semiconductors devices

in [3]). However, currently there are powerful and low cost parallel machines

like the clusters of Symmetric Multiprocessors (SMPs), which makes it pos-

sible, by deriving the suitable parallel software, to obtain simulation results

in reasonable response times. There exist proposals of parallel deterministic

solvers for semiconductor device simulation, both for distributed memory ma-

chines [9,2] and shared memory multiprocessors [6]. However, these proposals

do not solve the full Boltzmann Equation for the transport but they are based

on macroscopic models like hydrodynamic and drift-diffusion models. The aim

of this paper is to show a flexible parallel WENO-Boltzmann solver for a wide

family of 2D semiconductor devices. This work completes the preliminary one

in [10], where a parallel solver for a MESFET device was presented, using the

deterministic solver developed in [4,5]. The parallel solver in [10] was devel-
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oped only for a MESFET device. The program structure was designed using

the particularity of the MESFET geometry and the authors were focused on

the experimental results, without a description of the main design aspects.

Therefore, the program had to be modified to simulate every different device.

Here, we overcome this particularity by presenting a general improved parallel

design and implementation of the numerical scheme proposed in [5], which is

a general parallel solver for a wide range of devices. The main improvements

with respect to [10] also concern the Poisson solver, which is based on a di-

rect linear system solver (replicated on every processor), and a more efficient

implementation of the interprocessor communication. Moreover, the software

presented in [10] is restricted to users who are familiar with it. However, this

new application makes it possible that any interested person, without previous

knowledge about the underlying numerical scheme and the parallelization, can

take advantage of this solver by exploiting efficiently a parallel architecture to

simulate a particular semiconductor device.

In the next section, we describe the underlying numerical scheme, details of

that section are included in an Appendix. Section 3 introduces the semicon-

ductor device representation, which enables an efficient and flexible implemen-

tation of the numerical scheme. Section 4 describes the design of our parallel

solver. In Section 5, we show and analyze the results obtained when MOS-

FET and Double Gate MOSFET devices are simulated on a cluster of SMPs.

Finally, in Section 6 we collect the main conclusions of the work and present

the lines of further work.
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2 WENO-Solver for the Boltzmann-Poisson system

The WENO-solver for the Boltzmann-Poisson system (1)-(4) in 2D physical

space simulates another system, which is obtained from the previous one after

a dimensionless process and a pseudo-spherical change of variables in the wave

vector k, such as was done in [4,5]. Of course, the results can be translated

to the original Boltzmann-Poisson system by going backwards in the process.

The new unknown is

Φ(t, x, y, ω, µ, φ) = s(ω)f(t, x, y, ω, µ, φ),

where x and y are the spatial coordinates, ω ≥ 0 is a dimensionless energy,

µ ∈ [−1, 1] is the cosine of the angle with respect to x-axis and φ ∈ [0, 2π] is the

azimuthal angle and s(ω) =
√

ω(1 + ακω)(1 + 2ακω) (where ακ is introduced

in [4]). Then, a dimensionless Boltzmann equation in the 2D physical space is

written in conservative form as:

∂Φ

∂t
+

∂

∂x
(a1Φ) +

∂

∂y
(a2Φ) +

∂

∂ω
(a3Φ) +

∂

∂µ
(a4Φ) +

∂

∂φ
(a5Φ) = s(ω)C(Φ), (5)

where C(Φ) represents the dimensionless collision operator, in the new vari-

ables (see Appendix for more details).

The strategy to obtain the numerical solution is as follows: we consider a

pseudo-spherical change of variables and dimensionless process for the Boltz-

mann equation and we simulate the dimensionless equation (5). Thus, we ob-

tain the dimensional electron density (see Appendix, Equation (10)). Then, we

solve numerically the Poisson equation and obtain the electric field, which will

be used in the transport equation (see expression of flux terms in Appendix).
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Numerically, we simulate the Equation (5) using a conservative fifth order

finite difference WENO scheme [7] for the transport variables. This is the most

demanding computation in the numerical algorithm and will be explained in

Section 4 (see also Appendix for details about WENO-scheme). In order to

guarantee the precision, the 5D computational domain (directions x, y, ω, µ, φ)

is discretized by taking an uniform mesh in each direction. We will focus on

the simulation of charge transport in a rectangular area of a 2D semiconductor

device with dimensions Lx × Ly and we will use a 5D mesh with dimensions

(Nx+1)×(Ny+1)×Nω×Nµ×Nφ in the numerical resolutions. The coordinates

of the mesh points are calculated as follows:

xi = i∆x, i = 0, 1, . . . , Nx, ∆x = Lx/Nx

yj = j∆y, j = 0, 1, . . . , Ny, ∆y = Ly/Ny

ωk = (k − 1/2)∆ω, k = 1, . . . , Nω, ∆ω = ωmax/Nω

µm = (m − 1/2)∆µ − 1, m = 1, . . . , Nµ, ∆φ = π/Nφ

φn = (n − 1/2)∆φ, n = 1, . . . , Nφ, ∆µ = 2/Nµ

(6)

where wmax denotes the maximum value of the energy, which is adjusted in the

numerical experiments to fulfill that Φ(t, x, y, ω, µ, φ) ≃ 0 for every t, x, y, µ, φ

and ω > ωmax. Moreover, we consider ωmax = Nα (an integer multiple of α,

see [4]).

The midpoint quadrature formula is used to evaluate the dimensionless colli-

sion operator C(Φ)(t, xi, yj, ωk, µm, φn) (see Appendix, Equation (8)) at each

point of the 5D domain, and the electron density ρ(t, xi, yj) (see Appendix,

Equation (10)). As a consequence, we obtain a charge-conservative method.

To solve the Poisson Equation (4) and compute the electric potential V , we

have to solve a linear system whose coefficient matrix is a banded matrix
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which does not change through time integration. Therefore, we can use a

direct method to solve the linear system where the factorization of the matrix

is made only once and one forward elimination and back substitution is made

for each Runge-Kutta stage. When the electric potential V has been computed,

we can approximate the electric field at each 2D mesh point by using central

finite differences.

The computation of the potential is performed in the whole device, but Equa-

tion (5) is only simulated in the transport zone. This fact constitutes an im-

portant difference with [10]. Moreover, in the present work a different solver

has been considered to simulate the Poisson Equation (see Section 4). The evo-

lution in time of the distribution function Φ is developed by mean of a third

order TVD Runge-Kutta scheme (see Appendix for a detailed description).

3 Device model

The Boltzmann-Poisson system depends on the characteristics of the semicon-

ductor device we wish to simulate, due to the influence of the geometry and

the scatterings in the materials. For instance, in MOSFET devices (with one

or two gates) there are regions without electron transport. These regions are

oxide bands (see Figure 1 for a MOSFET device with a single gate and for a

DG-MOSFET device). Consequently, the BTE Equation (5) is only taken into

account in the silicon band (transport region), while the Poisson Equation (4)

has to be solved in the whole device. This means an important difference with

the analysis developed in [10] for a MESFET device, where only transport

region had to be considered.
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In order to avoid redundant computations, two different regions in the 2D

device are considered:

• Non transport region: It is an area without charge transport, where only the

electric potential and the electric field are computed.

• Transport region: It is an area with electron transport. Since the function

Φ is defined only in this region, the computational cost of the algorithm

is concentrated in this region and a good balance of the computational

workload associated to this area is essential to design a parallel version.

The whole physical 2D device (including the non transport region) is dis-

cretized using Nxall + 1 mesh points in the x direction and Nyall + 1 mesh

points in the y direction. In the transport region, the distance between mesh

points in x and y is considered uniform due to the use of the WENO scheme.

Although this can be considered as a limitation of the numerical scheme, the

scheme makes it possible to define different regions in the physical space of

the device, each one using different uniform spatial step sizes (in x and y di-

rections), by using interpolation between regions (see [15]). To discretize the

physical space in the transport region, we consider Nx + 1 equidistant points

in x and Ny + 1 equidistant points in y (see Figure 2). For the transport re-

gion, we have considered an uniform mesh in each direction of the 5D space

(x, y, ω, µ, φ) with mesh sizes ∆x, ∆y, ∆ω, ∆µ and ∆φ (see (6)).

With this discretization, we have considered the following data structures:

• Structures defined in the whole device: we have used a 2D array, V, with

(Nxall + 1)(Nyall + 1) cells to store the values of the electric potential V .

Therefore: V(i, j) = V (t, xi, yj), i = 0, . . . , Nxall, j = 0, . . . , Nyall.

Additionally, two arrays with this structure have been used to store the
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values for the components of the electric field, Ex and Ey, in order to save

them into a data file.

• Structures defined only in the transport region:

- To store the values of the adimensional distribution function Φ at each

point of the 5D domain and each time instant tn, we have used a 5D array

Φ with (Nx + 1) × (Ny + 1) × Nω × Nµ × Nφ cells. Therefore, in the s-

th Runge-Kutta stage (s = 0, 1, 2) of the n-th time step of simulation, Φ

fullfills that Φ(i, j, k, m, n) = Φ(n,s)(tn, xi, yj, ωk, µm, φn), where i, j, k, m, n

vary between the limits given in (6).

We use an additional array with the same structure of Φ to model

L(Φ(n,s)) at each time step as defined in (11), where L is an approxima-

tion of the spatial-momentum derivatives and the collision operator (see

Appendix). This array will be denoted by L(Φ).

- The electron density ρ and the electric field components (which only need

to be computed in the transport region) are modeled with 2D arrays, ρ,

Ex and Ey, with (Nx + 1) × (Ny + 1) cells, as follows:

ρ(t, xi, yj) =ρ(i, j)

E(t, xi, yj) = (Ex(i, j), Ey(i, j)) , i = 0, . . . , Nx, j = 0, . . . , Ny.

Additionally, other arrays with the same structure and type are used

to store several intermediate results (for instance, to store the right hand

side of the Poisson Equation (4)).

3.1 Device description

The user of this application describes the information about the 2D device to

be simulated in a file, using a previously fixed notation (see Figure 3 for a
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MOSFET device and Figure 4 for a DG-MOSFET device). In this way, the

sofware can be applied to simulate devices with any rectangular geometry (or

more general geometries, which can be divided in rectangular regions with

and without charge transport). A description file is structured in sections

(GEOMETRY, POTENTIAL, SIMULATION, etc.) and has to include the following

information:

- 2D device geometry: the section GEOMETRY allows the user to define the

sizes of the whole device, the position and size of the transport region (where

the exclusion of oxide areas can be described with the clause EXCLUDING as

it is shown in the MOSFET description of Figure 3) and the contact zones

(source, drain and gates). Additionally, in this section, we must include the

information concerning to the number of mesh points (Nxall, Nyall, Nx,

Ny, Nω, Nµ, Nφ).

- Initial conditions: there are specific sections to assign the initial values at

each mesh point of the physical space for variables associated to the doping

concentration (DONORS, ACCEPTORS), dielectric constant (DIELECTRIC) and

the electric potential applied to the contacts (POTENTIAL). These values can

be defined by assigning values to rectangular regions of the 2D spatial device

or providing the name of a file containing the values assigned to each spatial

mesh point.

- Simulation parameters: the user provides several parameters which result

of interest for the simulation such as the final simulation time and the

maximum number of time steps which are permitted.
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4 Parallel WENO BTE solver

4.1 Decomposition strategy

In this numerical algorithm, each component of the array Φ (which is the most

important data structure) can be updated simultaneously by performing the

same type of calculations at each time step. Therefore, the solution methods

can be parallelized in a natural way using domain decomposition techniques

[8]. The data arrays described in Section 3 have been suitably partitioned

among the processors of the parallel machine and each processor will update

its local data subdomain simultaneously. To minimize the total execution time,

the mapping of data to processors must balance the computational workload

while minimizing the volume and frequency of interprocessor communication.

We have considered that a good strategy consists of partitioning the 2D phy-

sical space of the device among the processors (geometrical decomposition)

by using a 2D block distribution scheme [8]. This type of data distribution is

applied to 5D arrays (like Φ) by splitting the x and y dimensions.

A bidimensional grid of logical processors is defined automatically from the

mesh size parameters for the transport area (Nx and Ny) and the number

of existing physical processors, although the user can define explicitly the

dimensions of the logical processor grid. The data arrays are assigned to the

processors of this grid by partitioning the dimensions of the 2D physical space

by rectangular blocks. However, the load balancing of this block decomposition

is guided by the dimensions of the transport area.

Given a 2D logical grid with Px × Py processors, the array Φ is assigned to
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this grid by using rectangular blocks (if we only consider the partitioning of

the 2D physical space) with bx × by ×Nω ×Nµ ×Nφ contiguous elements, with

bx = ⌈(Nx + 1)/Px⌉ and by = ⌈(Ny + 1)/Py⌉, where for all a ∈ IR, ⌈a⌉ denotes

the smallest integer not smaller than a. The same type of data distribution,

but considering 2D blocks with bx × by elements, is followed for the 2D arrays

defined on the transport area (ρ, Ex, Ey, etc.).

Since most of the computational cost of the numerical scheme is concentrated

on the transport area, the 2D array V, which maintains values for points

out of the transport area, will be replicated in all the processors. Moreover,

the computation of this data array is not decomposed among the processors

but all the components of V are computed on all the processors. Figure 5

illustrates the mapping of a DG-MOSFET device which includes a transport

region, discretized with 27 × 7 points ([Nx + 1] × [Ny + 1]), on a logical grid

with 3 × 2 processors. In this figure, we can see how each processor manages

a rectangular block with a similar number of points in the transport area and

all the processors must manage the array V which includes points that do not

belong to the transport area. This strategy exhibits the following advantages:

• The computational load is well balanced among the processors since simula-

tion of the transport area consumes almost all the execution time and each

point in the transport area requires approximately the same computation.

• We will show that the communication costs are relatively low if compared

with the computation because the most significant communication opera-

tions are derived from the computation of the derivatives with respect to

the physical space dimensions (x and y).

• Since many computation phases do not require remote communication, a

great deal of the existing sequential code can be reused without changes to
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derive the parallel version. As a result, the software engineering costs have

been considerably reduced.

4.2 Parallel algorithm

A sketch of the parallel algorithm which simulates the evolution of Φ is shown

in Figure 6, where the main computing phases are represented by labelled

boxes. In this figure, several boxes have a shadow to indicate that the co-

rresponding calculations are distributed among the processors of the parallel

machine. The boxes without shadow indicate that the corresponding calcula-

tions are replicated in all the processors of the parallel machine.

Initially, the information of the device is read from a description file (see

example in Figures 3 and 4) and these data (which include the values of the

doping concentration and the dielectric constant at each spatial mesh point

together with the potential in the contacts) are copied to all the processors.

The Poisson Equation (4) involves the solution of a linear system with the

following form:

A · V =
e

ǫ0
[ρ(i, j) − ND(i, j)] (7)

where A can be obtained by discretizing the spatial derivatives of Equation

(4) by using a combination of finite differences schemes [11] and introducing

the appropriate boundary conditions (see [5]). As a result, A is a n×n matrix

with n = (Nxall + 1)(Nyall + 1). Since A is a constant banded matrix (it

does not change through time integration) with bandwidth 2Nxall + 3 and

n is not too large, we build and obtain the LU decomposition of A before
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the main loop of the application. This LU decomposition will be used to

perform one forward elimination and back substitution for each time step

and Runge-Kutta stage (see Figure 7) in order to solve the linear system (7).

The construction and factorization of A is performed in all processors only

once at the start of the computation (see Figure 6). A different scheme was

considered in [10], where an iterative parallel red-black SOR (Successive Over

Relaxation) method was used. A direct solver becomes more appropriate in

this case, since LU decomposition is computed only once at the beginning of

the process. Therefore, it is not worth considering a parallel scheme to solve

the systems after the LU decomposition, since it is not expensive at all.

Next, the local block of the array Φ which each processor maintains is ini-

tialized. The local block of the processor Pl,m in a Px × Py processor grid

includes the elements of the form Φ(i, j, k, m, n) with i = istart, . . . , iend,

j = jstart, . . . , jend, k = 1, . . . , Nω, m = 1, . . . , Nµ, n = 1, . . . , Nφ, where:

istart = l ∗ bx, iend = min(Nx + 1, (l + 1) ∗ bx − 1),

jstart = m ∗ by jend = min(Ny + 1, (m + 1) ∗ by − 1),

and the block sizes bx, by has been defined in the previous section. The local

blocks of the 2D distributed arrays (like ρ) has the same structure as the local

blocks of Φ but omits the indexes k, m and n.

When Φ is initialized, the following computational phases have to be per-

formed for each time step and Runge-Kutta stage:

(1) The local block of the electron density array, ρ, is computed from Φ.

This phase requires the parallel evaluation of the composite midpoint

quadrature formula to approximate the integral (see Appendix, Equation

(10)). The mapping of elements of ρ and Φ onto the processors makes
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it possible that all the data necessary to compute the local block of ρ is

available in the subdomain of each processor.

(2) The Poisson solver must be used to obtain the local blocks of the arrays

Ex and Ey (see Figure 7). Taking into account that the solver is applied to

relatively small 2D domains (Nx < 300 and Ny < 300), we have finally de-

cided to replicate the computation of the electric potential V onto all the

processors. The right hand side of Equation (4) is computed in parallel,

following the block distribution of the array ρ, but then it is replicated

onto all processors. When a copy of the array V has been computed in

all the processors, each processor computes its main block of the arrays

Ex and Ey. The replication of the code to solve the linear system (7) has

a beneficial effect on the performance of the parallel solver. In fact, the

small dimension of the system and the type of distribution followed by

the right hand side vector make the overhead of a distributed solution

for (4) greater than the parallelization benefits. This fact represents an

improvement with respect to the code developed in [10]. We have checked

experimentally that the time needed to compute the potential is reduced

considerably with this choice. Moreover, the execution time required by

the Poisson solver is negligibe in comparison with the time required by

the rest of calculations (see Figure 16).

(3) The local block of the array L(Φ), which stores the addition of the deriva-

tives obtained by WENO5 and the evaluation of the collision term (see

Appendix, Equation (12)), is computed at each processor (see the follo-

wing subsection).

(4) The local block of Φ is updated from the block of L(Φ) during the s-th

Runge-Kutta stage by using a data parallel version of the method intro-

duced in Equation (11) of Appendix. With the distribution followed for
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the distributed arrays Φ and L(Φ), each processor can update its main

subdomain of Φ during this phase without interprocessor communication.

(5) After a time step, the new step size ∆t is computed and the current time

t is updated.

(6) When the new current time t fullfills a certain condition defined by the

user (according to a given update frequency), the distributed array Φ is

gathered to one particular processor in order to be processed by a visuali-

zation system. The visualization system allows the user to view graphical

representations of several macroscopic quantities (electron density, elec-

tric potential, energy, x and y components of the electric field, x and y

components of the moment, etc.) on the screen (see Figure 10) at the cu-

rrent simulation time, and must also periodically generate several output

files containing data about the probability density function f (obtained

from the Φ array) at intermediate time steps.

4.2.1 Computation of the spatial derivatives and the collision term

In Figure 8, the different phases which are necessary to update the distributed

array L(Φ) are illustrated.

The local block of the distributed array L(Φ) is initialized with the appro-

ximation of the collision operator (see Appendix, Equation (8)) by using the

composite midpoint quadrature formula. Taking into account the distribution

of Φ among the processors, this calculation can also be performed in parallel

without interprocessor communication.

To parallelize the computation of the flux terms in each dimension by using

the WENO5 scheme, it is necessary to consider some dependences since the
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derivatives of Φ at each mesh point are calculated following an asymmetric

pattern with 6 points (2 points on the left and 3 on the right or vice versa),

which depends on the sign of the corresponding coefficient (see Appendix for

more details). These dependences are less important in directions of ω, µ

y φ, since the distribution of the array Φ among the processors guarantees

that the computation of these derivatives can be completed in each processor

without interprocessor communication. However, to compute the derivatives

with respect to x and y, each processor must exchange the data points located

in the boundary of its Φ subdomain with its neighbours in the processor mesh.

In order to avoid the dependence on the coefficient sign and to reduce the

data reordering cost, we have assumed a symmetric pattern with 7 points

to compute the derivatives in x and y in the parallel version. Precisely, we

assume that the Φ derivative with respect to x direction at a point value with

position (i, j, k, m, n) in array Φ depends on values of points with positions

in the set {(l, j, k, m, n) : l = i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3}. We

reason in an analogous way for the derivative in the y direction by changing i

by j. Therefore in these derivatives, each processor must transfer 3 rows or 3

columns in its subdomain boundaries of the array Φ with each neighbour in the

processor mesh (see Figure 9). Moreover, the local block of the Φ array at each

processor must include some additional ghost cells in their boundaries in order

to store and access easily to the values received from neighbour processors.

The time taken to perform the remote communication in the parallel compu-

tation of L(Φ) is reduced by using nonblocking communication primitives [8]

in order to overlap the computation of the derivatives in directions ω, µ and

φ (and the collision operator) with the communication necessary to exchange

the subdomain boundaries in the x and y directions. To implement this stra-
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tegy, the transference must be initiated before starting the computation of

L(Φ) and it must be completed before the computation of the derivatives in

x and y directions as it is illustrated in Figure 8.

4.3 Implementation issues

The solver has been implemented following a SPMD (Single Program Multiple

Data) programming style [8] as a C++ SPMD program augmented with calls

to MPI-1 functions [18]. In order to obtain the best performance, we have used

the C++ gnu compiler with the options which AMD recommends to optimize

numerical codes onto AMD Opteron processsors (-O3 -m64 -march=opteron

-ffast-math -funroll-all-loops -ftree-vectorize).

Several C++ classes have been defined to manage 2D and 5D arrays dis-

tributed following the above mentioned 2D block mapping. The class which

encapsulates 5D arrays (which models the function Φ) includes methods to

perform the following: to compute the derivatives in each direction, to start

and finalize the exchange of the boundaries with neighbour processors (by

using the ghost cells), to update the array by performing a Runge-Kutta

stage, to evaluate the collision term, to compute de electron density array,

etc. The encapsulation of the distributed data structures facilitates the main-

tenance of the existing parallel code and makes it possible to reuse this code

in applications with similar requirements.

MPI nonblocking communication functions [18] have been used to enable the

overlapping of computation and communication in the parallel evaluation of

L(Φ). These functions involve the use of opaque request objects which identify
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the particular communication operation in order to be able to check its comple-

tion. Since the data exchange between processors is repeatedly performed with

the same arguments for each Runge-Kutta stage, we have used MPI persis-

tent communication requests to implement efficiently this data exchange and

reduce the overhead for remote communication in each Runge-Kutta stage.

To solve the Poisson equation (4), we used routines of the LAPACK library

for banded linear systems [1] which have been optimized for AMD Opteron

processors.

The visualization system consists in a graphical user interface where the va-

lues of several macroscopic quantities at each 2D spatial grid point of the

device can be drawn on the screen by using 3D graphics, in order to study

interactively its evolution in time. The user can interact with the visualization

system by: choosing the particular magnitudes which are to be drawn on the

screen, stablishing what is the update frequency for the graphics and for the

output data files, performing geometric transformations on the 3D graphics

(rotation, translation and scaling) and modifying the parameters of the 3D

graphical representation. A full screenshot which shows the 3D graphical rep-

resentations of the electron density, the potential and the energy are presented

in Figure 10. To implement the visualization system, it has been necessary to

integrate several libraries to develop graphical interfaces and 3D graphics with

a Posix Thread library and MPI. In particular, one particular MPI process

must manage two different Posix threads: the main thread is part of the MPI

parallel simulation and the other thread executes the visualization system.

Both threads are synchronized by using semaphores to share simulation data

but their interaction does not affect to the consistency of the simulation.
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5 Experimental results

The solver has been applied to two types of MOSFET devices: a MOSFET

with a single gate and a DG-MOSFET, whose geometries and characteristics

are described in Figure 3 and Figure 4, respectively. Several numerical exper-

iments have been done on a heterogeneous cluster of 7 SMP machines with

4 GBs. of RAM (per machine) running Open SuSE 10.3 Linux, connected

with a Gigabit Ethernet switch. 4 of these machines are biprocessor AMD

Opteron (2.4 GHz) and 3 are biprocessor AMD Opteron dual core (2.0 GHz).

The cluster has 20 processing elements and several experimental tests have

shown that the difference of performance between their processing elements is

very small. Therefore, we can consider this cluster as an homogeneous parallel

system with 20 processors, taking into account the synchronous nature of this

application.

One particular simulation of the DG-MOSFET device has been performed by

considering a mesh with Nx = 30, Ny = 48, Nω = 120, Nµ = 12 and Nφ = 12

for the domain (x, y, ω, µ, φ) in the transport region. The parameters to define

the mesh for the whole 2D device are Nxall = 30, Nyall = 56. Figure 10

shows how the electric potential, density and energy vary on the 2D physical

device when t = 0.164036 ps.

We have performed experiments to study the runtime performance of the

solver on the parallel machine when devices with different geometry are sim-

ulated.

Figures 11 and 13 represents the evolution of the execution time when the

number of processors is increased in the parallel simulation of the MOSFET
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and DG-MOSFET device respectively. In these figures, 4 different meshes

are used for the transport region and the execution times corresponds with

the simulation of the integration time interval [0 ps, 0.01 ps]. Figures 12

and 14 show the speedups obtained for different mesh sizes and number of

processors for the same integration time interval. The speedup results have

been obtained by comparing the execution times of the parallel solver with

the runtimes obtained with a highly optimized monoprocessor code based

on the same numerical scheme. . The monoprocessor application have been

executed on one of the multicore AMD processors of the target machine but

only exploit one core of the physical node. In fact, the runtime results for one

processor (see Figures 11 and 13) are obtained with this sequential solver.

The results show a very good scalability and a high parallel efficiency for

meshes of practical interest when both devices considered are simulated.

For the particular MOSFET geometry considered (see Figure 3), the non trans-

port area (SiO2 area) occupies approximately the 11% of the full 2D device

area. The computation related to this area is not parallelized and it is an

overhead source in the parallel simulation. Since the proportion of oxide for

this MOSFET device is small, the influence on the performance is small and

an efficiency higher than 80% is achieved for medium size meshes and higher

than 90% for transport meshes with a high number of points. Figures 11 and

12 show a very good scalability of the parallel solver in the simulation of this

device for the range of number of processors we have considered.

For the particular DG-MOSFET geometry (see Figure 4), the non transport

area occupies approximately the 14% of the full 2D device area and con-

sequently the negative influence on the performance is something more no-
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ticeable. However, an efficiency higher than 75% is achieved for medium size

meshes and higher than 80% for transport meshes with a high number of

points. Figures 13 and 14 also show a very good scalability in this situation

for the range of number of processors we have considered.

The beneficial effect of the communication-computation overlapping on the

performance is only obtained when the number of processors is sufficiently

large. In particular, with number of processors less than 16, the benefits of

the overlapping are not evident. However, with P = 16 and P = 20 the time

reduction in the evaluation of L(Φ) is considerable, as shown in Figure 15.

In this figure, the execution times taken to compute L(Φ) at one integra-

tion step of the DG-MOSFET device simulation with different meshes and

communication strategy are compared for P = 16 and P = 20.

The relative impact on the execution time of the most important computing

phases are shown in Figure 16 when the DG-MOSFET is simulated using

several transport mesh sizes and P = 20 processors. It is important to note

that the contribution of the Poisson solver is very small and consequently the

replication of this computing phase does not degrade the scalability of the

parallel solver.

6 Conclusions and Further work

A flexible and efficient parallel solver of the Boltzmann-Poisson system for

semiconductor devices has been presented. This system models the behavior

of realistic 2D semiconductor devices. A suitable geometrical decomposition of

the data domain among the processors, the replication of the Poisson solution
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by means of a direct linear system solver and an efficient design of the remote

communications have been considered to reduce the overheads. As a conse-

quence, the parallel solver exhibits a good balance of the computational load,

and the communication costs for the most important simulation phases are

relatively small in comparison with the computation costs. The experimental

results obtained by simulating devices with different geometries on a SMP

cluster show a good speedup and scalability in the range of processor numbers

which has been considered. These results also suggest that the efficiency can

be limited if the non transport area occupies a relatively high proportion in

the full 2D spatial device. This solver allows us to simulate a huge range of

realistic devices in a simple way without need of knowing details about the

numerical scheme. This is possible because the solver is designed to deal with

a great variety of shapes, materials, boundary conditions . . . Therefore, it can

be used by electronic engineers who could reach the results by only describing

the geometry of the device with an input file.

Although the solver is not competitive with Monte Carlo schemes in run-

time performance (because of the deterministic simulation of full Boltzmann-

Poisson system is very costly), the response times of our parallel solver are

quite acceptable and the solver overcomes several drawbacks of Monte Carlo

schemes: noise free resolution, it enables evolution on time of the distribution

function and therefore of all the moments, it makes it possible to simulate

almost empty regions, etc. On the other hand, the Boltzmann-Poisson system

represents the most realistic model for this kind of devices where a semiclassi-

cal description is enough. Therefore a deterministic simulation of this system

is interesting since could be considered as a reference to tune other simpler

models (drift-diffusion, hydrodynamic, ...).
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As a continuation of this paper, we are working on extending the paralleliza-

tion strategy to enable efficient simulations on parallel heterogenous systems

and developing a version of the solver for Graphics Processing Unit (GPUs)

[16], in order to improve the performance drastically.

Appendix

In this Appendix we collect the missing details in the paper. Although they

were developed in previous publications (included in the References), we find it

convenient to write them here in order to facilitate the reading to the interested

reader.

Dimensionless Boltzman Equation

In the 2D physical space a dimensionless Boltzmann equation, using the change

of variables and the dimensionless process given in [4,5], is written in conser-

vative form as:

∂Φ

∂t
+

∂

∂x
(a1Φ) +

∂

∂y
(a2Φ) +

∂

∂ω
(a3Φ) +

∂

∂µ
(a4Φ) +

∂

∂φ
(a5Φ) = s(ω)C(Φ),

where C(Φ) represents the dimensionless collision operator, in the new vari-

ables, which is given by:

C (Φ)(t, x, y, ω, µ, φ) =
1

2π t∗

π
∫

0

1
∫

−1

[βΦ(t, x, y, ω, µ′, φ′)

+ aΦ(t, x, y, ω + α, µ′, φ′) + Φ(t, x, y, ω − α, µ′, φ′)]dφ′dµ′
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− 1

s(ω) t∗
[βs(ω) + as(ω − α) + s(ω + α)]Φ(t, x, y, ω, µ, φ) . (8)

where the constant parameters t∗, α, a and β depend on the material (see [4]

and [3] for details).

The coefficients for the flux terms (a1, . . . , a5) are given by:

a1(ω) =
1

t∗

µs(ω)

p(ω)2
, a2(ω, µ, φ) =

1

t∗

q(µ)s(ω) cosφ

p(ω)2

a3(t, x, y, ω, µ, φ) = − 1

t∗

2s(ω)

p(ω)2
[Ex(t, x, y)µ + Ey(t, x, y)q(µ) cosφ]

a4(t, x, y, ω, µ, φ) = − 1

t∗

p(ω)

s(ω)
q(µ) [Ex(t, x, y)q(µ) − Ey(t, x, y)µ cosφ]

a5(t, x, y, ω, µ, φ) =
Ey(t, x, y)

t∗

sin φ

q(µ)

p(ω)

s(ω)
,

where q(µ) =
√

1 − µ2 and p(ω) = (1+2ακω). Ex and Ey are the components

of the electric field vector (E = [Ex, Ey] = [∂V
∂x

, ∂V
∂y

]), which is computed self-

consistently by solving the Poisson equation (4) in the 2D spatial domain:

∂
[

ǫr(x, y)∂V
∂x

]

∂x
+

∂
[

ǫr(x, y)∂V
∂y

]

∂y
=

e

ǫ0
[ρ(t, x, y) − ND(x, y)] . (9)

where ρ(t, x, y) is obtained from Φ by:

ρ(t, x, y) = CD

π
∫

0

∞
∫

0

1
∫

−1

Φ(t, x, y, ω, µ, φ) dµ dω dφ, (10)

where CD is a dimensional constant (see [4] and [3] for details).

Fifth order finite difference WENO scheme

Finite differences WENO schemes are useful to approximate the derivatives of

functions with singularities. Due to the usually discontinuous doping profile,
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and consequently with high gradient regions, it becomes appropriate to use

a fifth order finite difference WENO scheme to approximate the derivatives

on space and momentum. This method is used for non linear conservation

laws and has been considered in a huge number of different applications (see

[7,12,13]). The WENO scheme is fifth order for smooth solutions and is non

oscillatory in the high gradient regions. Due to this fact we can use a third

order TVD (Total Variation Diminishing) Runge-Kutta explicit method [14]

for the evolution on time.

We obtain the approximations to the point values of the solution by means of

dimension by dimension approximation to the spatial derivatives by using the

above-mentioned fifth order WENO scheme. To be more precise, the approxi-

mation of ∂
∂x

(a1Φ) at the mesh point (xi, yj, ωk, µm, φn), is obtained with the

following procedure:

• The variables y = yj, ω = ωk, µ = µm and φ = φn are fixed.

• We call gi = a1Φi, i = −3,−2,−1, . . . , Nx +3, where the values of Φn,i,j,k,m,n

with i < 0 and i > Nx are given by the boundary conditions considered in

[3], Φi = Φ(tn, xi, yj, ωk, µm, φn) and a1 = a1(ωk, µm) where j, k, m, n are

fixed.

• Finally, for i = 0, . . . , Nx, we approximate ∂
∂x

(a1Φ)(xi, yj, ωk, µm, φn) by:

∂

∂x
a1Φi =































W (gi−3, . . . , gi+2), if a1 > 0

W (gi+3, . . . , gi−2), if a1 ≤ 0

where W : IR6 → IR is a non linear function which is described in [4].

Therefore, if a1(ωk, µm) > 0, the approximation in (i, j, k, m, n) depends on

values of Φ in three left neighbour mesh points (in i) and two right neighbours,
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while if a1(ωk, µm) ≤ 0 the approximation depends on two neighbours on the

right side and three on the left side in i.

Time discretization

A third order TVD Runge-Kutta method has been used for the evolution

on time of the distribution function Φ. For a given value of the function on

time tn, Φn, we obtain an approximation of the distribution function on time

tn+1 = tn + ∆t, Φn+1, after performing three steps:

Φ(n,0) =Φn + ∆tL(Φn); Φ(n,1) =
3

4
Φn +

1

4
Φ(n,0) +

1

4
∆tL(Φ(n,0))

Φn+1 = Φ(n,2) =
1

3
Φn +

2

3
Φ(n,1) +

2

3
∆tL(Φ(n,1)) (11)

where L is an approximation of the spatial-momentum derivatives and the

collision operator, which has the following form:

L(Φ) = s(ω)C(Φ)−
(

∂

∂ω
(a3Φ) +

∂

∂µ
(a4Φ) +

∂

∂φ
(a5Φ)

+
∂

∂x
(a1Φ) +

∂

∂y
(a2Φ)

)

(12)

The time step size, ∆t, is dynamically fixed using a CFL condition which

depends on the evaluations of the coefficients of the flux terms (a1, . . . , a5)

and the 5D mesh parameters (see [3]).
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[3] Cáceres, M. J., Carrillo,J. A., Gamba, I., Majorana, A., Shu, C.-W. Deterministic

kinetic solvers for charged particle transport in semiconductors devices. in

Cercignani, C., Gabetta, E. (eds.) Transport Phenomena and Kinetic Theory,

Birkhuser, 151-171.

[4] Carrillo,J. A., Gamba, I., Majorana, A., Shu, C.-W. A WENO-solver for the

transients of Boltzmann-Poisson system for semiconductor devices: performance

and comparisons with Monte Carlo methods. J. of Comp. Physics, 184, 498–525

(2003).

[5] Carrillo, J.A.; Gamba, I.M.; Majorana, A.; Shu, C.-W.: 2D semiconductor device

29



simulations by WENO-Boltzmann schemes: efficiency, boundary conditions and

comparison to Monte Carlo methods, J. Comput. Phys., 214, (2006), 55–80.

[6] Gazzaniga G., Lanucara P., Pietra P., Rovida S. and Sacchi G., Rapid

parallelization of the drift diffusion model for semiconductor devices, In

Proceedings of EWOMP 2002 (2002).

[7] Jiang, G. and Shu, C.-W., Efficient implementation of Weighted ENO schemes,

J. Comp. Physics, 126, 202–228 (1996).

[8] Grama, A., Gupta A., Karypis G., Kumar. V., Introduction to Parallel

Computing, 2Ed. Addison-Wesley, 2003.

[9] Li Y., Sze S.M, Chao T.-S. A Practical Implementation of Parallel Dynamic Load

Balancing for Adaptive Computing in VLSI Device Simulation, Engineering with

Computers, Springer London, 18, 124-137 (2002).

[10] Mantas, J.M.; Carrillo J.A.; Majorana, A.: Parallelization of WENO-Boltzmann

schemes for kinetic descriptions of 2D semiconductor devices. Sci. Comp. in

Electrical Eng. Mathematics in Industry Springer Series. 9, 361-366 (2006).

[11] Selberherr, S., Analysis and Simulation of Semiconductor Devices. Springer

Verlag, Wien, 1984.

[12] Shi, J., Zhang, Y.-T., Shu, C.-W., Resolution of high order WENO schemes for

complicated flow structures, J. of Comp. Physics, 186, 690–696 (2003).

[13] Shu, C.-W. Essentially non-oscillatory and Weighted Essentially Non-

Oscillatory schemes for hyperbolic conservation laws. L. N. in Mathematics 1697

, 325-432 (1998)

[14] Gottlieb, Sigal., Shu, C.-W. Total variation diminishing Runge-Kutta schemes.

Mathematics of Computation, 67 , 73-85 (1998)

30



[15] Sebastian, K., Shu, C.-W., Multidomain WENO finite difference method with

interpolation at subdomain interfaces, J. Sci. Computing, 19, 405-438 (2003).

[16] Rumpf M., Strzodka R., Graphics Processor Units: New Prospects for Parallel

Computing, L. N. in Computational Science and Engineering, 51, 89-121 (2006).

[17] Van de Velde, E. F. Concurrent Scientific Computing, Springer Verlag, (1994).

[18] Message Passing Interface Forum, MPI: A Message Passing Interface Standard,

Univ. of Tennessee, Knoxville, Tennessee, (1995).

31



Fig. 1. Top: Silicon MOSFET scheme. Bottom: Silicon Double Gate MOSFET

scheme.

Fig. 2. Discretization for a 2D DG-MOSFET device.
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Fig. 3. Description file for a particular MOSFET device.
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Fig. 4. Description file for a particular DG MOSFET device.

Fig. 5. Partitioning of the domain among the logical processors for a DG-MOSFET

device.
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Fig. 6. General view of the algorithm.
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Fig. 7. Computation of the electric field components Ex and Ey.

Fig. 8. Data Flow for the Computation of L(Φ) with computation-communication

overlapping.
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Fig. 9. Remote communication pattern to approximate the fluxes in the x and y

directions.

Fig. 10. Full screenshot showing the use of the visualization system for a DG-MOS-

FET device.
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