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Abstract

In this work, we study the impact of renumbering the cells of unstructured triangu-
lar finite volume meshes on the performance of CUDA implementations of several finite
volume schemes to simulate two-layer shallow water systems. We have used several
numerical schemes with different demands of computational power whose CUDA im-
plementations exploit the texture and L1 cache units of the GPU multiprocessors. Two
different reordering schemes based on reducing the bandwidth of the adjacency matrix
for the volume mesh have been used. Several numerical experiments performed on a
Fermi-class GPU show that enforcing an ordering which enhances the data locality can
have a significant impact on the runtime, and this impact is higher when the numerical
scheme is computationally expensive.

1 Introduction

Currently, Graphics Processing Units (GPUs) are being used extensively to accellerate con-
siderably numerical simulations in science and engineering. These platforms make it possible
to achieve speedups of an order of magnitude over a standard CPU in many applications and
are growing in popularity [16]. In particular, GPUs have been used in many applications
based on finite volume numerical schemes [1, 2, 3, 7]. Currently, most of the GPU imple-
mentations of numerical schemes are based on the CUDA framework [14] which includes
an extension of the C/C++ language to facilitate the programming of NVIDIA GPUs for
general purpose applications.
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Although the performance of finite volume computations for unstructured meshes could
be substantially improved by using GPU platforms, the irregularity of the memory access
patterns hampers this goal.

Obtaining high performance on a CUDA-enabled GPU implementation of unstructured
mesh computations is not easy because mesh data cannot be easily laid out so as to enable
coalescing [15]. However, the renumbering of the data cells of a mesh has proved to be an
important way to improve the performance in parallel numerical computations which work
on unstructured meshes [4] because a suitable data ordering optimizes the cache usage. In
GPU, this approach could be possible if the ordering enables enough locality to use textures
and to improve the L1 cache usage.

In modern CUDA-enabled GPUs, reads from texture memory are cached in a manner
that preserves spatial locality, meaning that data reads from nearby points in space will
possibly be cache hits. On the other hand, in Fermi class GPUs, the same on-chip memory
can be dedicated mostly as L1 cache for each kernel call to reduce bandwidth demand [15].
A better access to texture and global memory can be achieved by renumbering the elements
in an unstructured mesh such that the elements nearby in the mesh remain nearby in texture
and global memory, enabling a better exploitation of the texture and L1 cache. Thus, one
can obtain substantial performance improvements without changing the code.

In this paper, we study the impact of renumbering the cells of unstructured triangular
finite volume meshes on the GPU performance for CUDA implementations of several finite
volume two-layer shallow water solvers. These CUDA solvers have been implemented to
take advantage of the texture and L1 cache units of a Fermi-class GPU, and exhibit different
numerical intensity profiles. In order to apply a cell reordering which enhances the data
locality, two reordering schemes based on reducing the bandwidth of the adjacency matrix
for the mesh are used. Our goal is to evaluate the effect of these reordering techniques on
the runtime of the finite volume CUDA solvers.

The outline of the article is as follows: the next section describes the underlying math-
ematical model and presents three finite volume numerical schemes to solve it. In Section
3 the CUDA implementation of the schemes is briefly described. Next, two bandwidth
reduction techniques which will be used as renumbering strategies are introduced in Sec-
tion 4. Section 5 shows and analyzes the performance results obtained when the different
CUDA solvers are applied to two test problems on a NVIDIA GTX 580 GPU using different
ordering strategies. Finally, conclusions are drawn in Section 6.

2 Mathematical model and numerical schemes

The two-layer shallow water system [5] is a system of partial differential equations which
governs the 2d flow of two superposed immiscible layers of shallow fluids in a subdomain
Ω ⊂ R2. This system has been used as the numerical model to simulate ocean currents, oil
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spills or tsunamis generated by underwater landslides and has the following form:
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Index 1 in the unknowns makes reference to the upper fluid layer and index 2 to the
lower one; g is the gravity and H(x), the depth function measured from a fixed level of
reference; r = ρ1/ρ2 is the ratio of the constant densities of the layers (ρ1 < ρ2) which,
in realistic oceanographical applications, is close to 1. Finally, hi(x, t) and qi(x, t) are,
respectively, the thickness and the mass-flow of the i-th layer at the point x at time t, and
they are related to the velocities ui(x, t) = (ui,x(x, t), ui,y(x, t)), i = 1, 2 by the equalities:
qi(x, t) = ui(x, t)hi(x, t), i = 1, 2.

To discretize System (1), the computational domain D is divided into L cells or finite
volumes Vi ⊂ R2, which are assumed to be triangles. Given a finite volume Vi, Ni ∈ R2 is
the barycenter of Vi, ℵi is the set of indexes j such that Vj is a neighbour of Vi; Γij is the
common edge of two neighbouring cells Vi and Vj , and |Γij | is its length; ηij = (ηij,x, ηij,y)
is the unit vector which is normal to the edge Γij and points towards Vj [5] (see Fig. 1).

Figure 1: Finite volumes

Assume that the approximations at time tn, Wn
i (i = 1, . . . , L), have already been

calculated. To advance in time, with ∆tn being the time step, all the numerical schemes
which will be used have the following general form:

c©CMMSE ISBN:xxxxxxxxx



Template for the CMMSE proceedings

Wn+1
i = Wn
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where |Vi| is the area of Vi.
The computation of F−ij (Wn

i ,W
n
j , Hi, Hj) ∈ R6 in (2) depends on the particular nume-

rical scheme. Here, three different numerical schemes will be presented: the classical Roe
scheme [5], the IR-Roe scheme [2] and the PVM-IFCP scheme [6].

To compute the n-th time step, the following condition can be used:
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(3)

where γ, 0 < γ ≤ 1, is the CFL (Courant-Friedrichs-Lewy) parameter.

2.1 The classical Roe scheme

In the classical Roe scheme, F−ij (herein called FROE−ij ) is computed as follows:
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−

ij and FROE
+

ij are the contributions of the edge Γij to the state of the volumes
Vi and Vj , respectively, where Fηij (W ) = F1(W ) ηij,x + F2(W ) ηij,y and Hα = H(Nα) with
α = i, j. Aij ∈ R6×6 and Sij ∈ R6 depends on Wn

i and Wn
j (see [5] for more details). The

matrix P±ij is calculated as:

P±ij =
1

2
Kij · (I ± sgn(Dij)) · K−1ij

where I is the identity matrix, sgn(Dij) is a diagonal matrix whose coefficients are the sign
of the eigenvalues of Aij , and the columns of Kij ∈ R6×6 are the associated eigenvectors
(see [5] for more details).

2.2 The IR-Roe scheme

The IR-Roe scheme exploits that system (1) verifies the property of rotational invariance
(see [2] for more details) to reduce the computational costs without losing excessive accuracy.
The resultant formula for F±ij (herein called F IR−ROE±ij ) reads as follows:
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where:
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2.3 The PVM-IFCP-scheme

The PVM (Polynomial Viscosity Matrix) schemes are a family of numerical schemes for
non conservative hyperbolic systems [6] which are defined in terms of viscosity matrices
obtained from the polynomial evaluation of a Roe matrix. The main advantage of these
methods is that they only need some information about the eigenvalues of the system and
the spectral decomposition of the Roe matrix is not needed unlike the previous schemes.

For a PVM scheme, F−ij (Wn
i ,W

n
j , Hi, Hj) is obtained by applying a similar process to

that described in 2.2 to derive FIR−ROE
±

ij . However, the flux Φ±ηij
is obtained by:
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where F1(Wηij ), Sij(Hj−Hi) and Bij(Wηij ,j−Wηij ,i) are defined in 2.2. Qij is the viscosity

matrix defined as Qij = αij0 I +αij1 Aij +αij2 A
2
ij + . . .+αijl A

l
ij , where I is an identity matrix

and αijk , k = 0, . . . , l, are particular coefficients of the PVM scheme.

The PVM-IFCP (Intermediate Field Capturing Parabola) scheme [9] is defined by the
coefficients αk, k = 0, 1, 2, obtained by solving the following system: 1 λ1 (λ1)

2

1 λn (λ4)
2

1 χint (χint)
2


 α0

α1

α2

 =

 |λ1|
|λ4|
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 (5)

being λ1 < λ2 < λ3 < λ4 the eigenvalues of the matrix Aij and

χint = Sext · max
2≤i≤3

(|λi|) with Sext =

{
sgn(λ1 + λ4) si (λ1 + λ4) 6= 0
1 otherwise

The choice of these coefficients provokes that this scheme is linearly stable L∞ with the
aforementioned CFL condition (see Equation (3)).

3 CUDA implementation of the schemes

The general structure of the CUDA implementation of the three numerical schemes exposed
in Section 2 is the same for all the schemes. This implementation is a variant of the
implementation described in [7], Section 7.3 and [2], Section 5. The general steps of the
implementation are depicted in Figure 2. Each step executed on the GPU is assigned to a
CUDA kernel. Next, we briefly describe each step:

- Build finite volume mesh: Volume data is stored in two arrays of L float4

elements as 1D textures, where each element contains the data (state, depth and area) of a
cell. We have used textures because each edge (thread) only needs the data of adjacent cells
and texture memory is especially suited for each thread to access its closer environment in
texture memory by exploiting the texture cache. Edge data is stored in two arrays in global
memory with a size equal to the number of edges: an array of float2 elements for storing
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Figure 2: Structure of the CUDA Implementation for all the schemes

the normals, and another array of int4 elements for storing, for each edge, the positions of
the neighboring volumes in the volume textures and the positions of the two accumulators
where the edge must write its contributions to the state of the neighboring volumes.

- Edge Processing: In this step each thread represents an edge Γij , i, j ∈ 1, . . . , L,
and computes the contribution F±ij of the edge to their adjacent volumes Vi and Vj . This is
the most costly computation phase and the particular calculations performed in this step
depends on the particular numerical scheme.

The threads contribute to a particular cell by means of six accumulators, each one being
an array of L float4 elements stored in global memory (see [7] for more details). The
ordering of the elements at each accumulator matches with the ordering of the elements in
the volume data array.

- Compute Wi and ∆ti for each volume: In this step, each thread represents
a volume and computes the local ∆ti of the volume Vi in accordance with (3) and also
updates the state Wi of that volume in accordance with (2) (see [7] for more details).

Since the 1D textures containing the volume data are stored in linear memory, we
update the textures by writing directly into them.

- Obtain minimum ∆t: This phase finds the minimum of the local ∆ti of the volumes
by applying the most optimized kernel of the reduction sample included in the CUDA
Software Development Kit [14]. The global step size ∆t obtained will be used in the next
iteration.
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4 Reordering techniques based on bandwidth reduction

Many algorithms to reduce the bandwidth of a sparse symmetric matrix have been published
in the literature. The Cuthill-McKee [8] and the Gibbs, Poole and Stockmeyer (GPS) [11]
algorithms are two of the most popular. The Reverse Cuthill-McKee algorithm (RCM) [10]
is a modification of the original algorithm where the resulting index numbers are reversed.
RCM algorithm usually generates a more reduced profile than the original algorithm and
consequently is most widely used.

Note that the application of a bandwitdh reduction algorithm to reorder the elements
of the volume arrays enables adjacent volumes in the mesh to be in closer positions in the
arrays which store the volume data. As a consequence, these algorithms can improve the
data locality and enable an optimization of the cache usage. In this work, we will analyze
the impact of ordering the mesh cells according to RCM and GPS algorithms.

5 Numerical Experiments

In this section we will study how the ordering of the volumes in the arrays which store
the volume data affects the GPU execution times obtained with different solvers. We will
consider two test problems:

Test 1 This test consists in an internal circular dambreak problem in the [−5, 5]× [−5, 5]
domain. Depth is given by H(x, y) = 6 and the initial condition is:

W 0
i (x, y) =

(
h1(x, y), 0, 0, h2(x, y), 0, 0

)T
, where

h1(x, y) =

{
4.0 if

√
x2 + y2 > 1.5

0.5 otherwise
, h2(x, y) = H − h1(x, y)

The ratio of densities is r = 0.5 and CFL paramenter is γ = 0.9.

Test 2 This test represents two unstable water layers in the [−5, 5] × [−5, 5] domain.
Depth function is H(x, y) = 1− 1.5 · e−x2−y2 and the initial state is:

W 0
i (x, y) =

(
h1(x, y), 0, 0, h2(x, y), 0, 0

)T
, where

h1(x, y) =

{
4.0 if x ≥ 0
0.5 otherwise

, h2(x, y) =

{
0.5 if x ≥ 0
4.0 otherwise

The ratio of densities is r = 0.98 and CFL parameter is γ = 0.9.
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For both test problems, the simulation time is 0.1 seconds and wall boundary conditions
(q1 · η = 0, q2 · η = 0) are considered. All the CUDA programs have been executed on
a Intel Xeon server with 8 GB RAM containing a GeForce GTX 580 card and the GNU
compiler has been used to derive the executables. We assign a size of 48 KB to L1 cache
and 16 KB to shared memory in all the kernels excepting the kernel used to obtain the
minimum ∆t. The edge processing kernel has been executed using a one dimensional grid
of blocks with a blocksize equals to 64 threads.

Classical Roe IR-Roe PVM-IFCP
Volumes MATLAB RCM GPS MATLAB RCM GPS MATLAB RCM GPS

4000 0.069 0.072 0.071 0.020 0.022 0.021 0.0048 0.0050 0.0050
16000 0.44 0.38 0.43 0.092 0.081 0.084 0.020 0.024 0.023
64000 3.13 2.36 2.71 0.65 0.51 0.57 0.14 0.15 0.15
256000 22.91 15.12 17.04 4.68 3.26 3.70 1.01 1.00 1.04
1024000 167.2 99.98 108.9 33.97 21.34 23.70 7.81 7.47 7.69
2080560 625.6 384.6 480.0 127.1 78.58 94.61 29.37 27.98 28.74

Table 1: Execution times in seconds for test 1 before and after applying the RCM and GPS
algorithms using a GeForce GTX 580.

Classical Roe IR-Roe PVM-IFCP
Volumes MATLAB RCM GPS MATLAB RCM GPS MATLAB RCM GPS

4000 0.059 0.061 0.061 0.022 0.021 0.021 0.0042 0.0045 0.0044
16000 0.37 0.34 0.37 0.11 0.089 0.098 0.017 0.020 0.020
64000 2.71 2.19 2.44 0.79 0.53 0.59 0.11 0.12 0.12
256000 20.97 14.80 16.46 6.06 3.31 3.82 0.85 0.86 0.88
1024000 166.9 103.5 113.4 46.07 21.35 24.48 6.73 6.37 6.56
2080560 623.8 395.7 502.2 169.2 75.40 100.3 25.15 23.40 24.93

Table 2: Execution times in seconds for test 2 before and after applying the RCM and GPS
algorithms using a GeForce GTX 580.

We have generated several triangular meshes using the Partial Differential Equation
Toolbox for MATLAB [13]. In order to compare the different orderings of the volume
arrays, we will execute the single precision CUDA programs of the classical Roe, IR-Roe
and PVM-IFCP schemes using the two former test problems and three different volume
orderings: the original provided by MATLAB and the resulting of applying the RCM and
the GPS algorithms to the original meshes.

The symrcm MATLAB function and the Fortran code given by the 582 TOMS algorithm
[12] have been used to apply the RCM and GPS algoritms, respectively.

For all the volume orderings, Tables 1 and 2 show the GPU runtimes in seconds for tests
1 and 2, respectively, Figure 3 shows the time reduction obtained with all the numerical
schemes and test problems, Figure 4 depicts graphically the adjacency matrices of the 4000
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Figure 3: GPU time reduction obtained with respect to the original meshes provided with
MATLAB: (a) Test 1; (b) Test 2.

Number of volumes MATLAB RCM GPS

4000 3786 73 62
16000 12000 147 126
64000 48000 294 249
256000 192000 598 500
1024000 768000 1206 1004
2080560 1996159 1728 1378

Table 3: Bandwidth of the meshes before and after applying RCM and GPS algorithms.

volumes mesh, and Table 3 shows the bandwidth of the adjacency matrices of all meshes.

We can see that, for the biggest meshes, the RCM ordering has given the best runtimes
in all cases. Specifically, with the classical Roe and IR-Roe schemes, execution times have
reduced approximately between 37 and 55 % for the meshes with more than one million
volumes in both test problems, whereas using the PVM-IFCP scheme the runtimes have
reduced the 5 %. The GPS ordering, although providing a lower bandwidth than RCM, has
given worse execution times than RCM for the biggest meshes in all cases.

6 Conclusions

The optimization of finite volume shallow water solver for unstructured meshes running on
GPUs has been dealt. The reordering of the volumes in the arrays which store the volume
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Figure 4: Adjacency matrices for the mesh with 4000 volumes before and after applying
RCM and GPS algorithms. nz denotes the number of non-zero elements: (a) original mesh
obtained with MATLAB; (b) after applying RCM; (c) after applying GPS.

data in GPU by using bandwidth reduction techniques makes it possible to reduce substan-
tially the execution times obtained because the L1 and texture cache usage is optimized.
The highest reduction has been achieved achieved when the reverse Cuthill-McKee ordering
is applied to these arrays and we obtain an improvement of 5 to 55% approximately in the
GPU simulation times (depending on the numerical scheme) with respect to the ordering
provided when the volume mesh is generated, by the MATLAB PDE toolkit. The impact
seems to be higher when the numerical intensity of the solver and the problem size grow.

Acknowledgements

This research has been partially supported by the Spanish Government Research projects
MTM09-11923, MTM2009-07719, and MTM2011-27739-C04-02.

References

[1] M. de la Asunción, J. M. Mantas and M. J. Castro, Programming CUDA-based
GPUs to simulate two-layer shallow water flows, Euro-Par 2010 Ischia (Italy) (2010).
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