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José M. Gallardo a
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Abstract

This paper is a review of the work that we are carrying out to efficiently simulate shallow water flows. In this
paper, we focus on the efficient implementation of path-conservative Roe type high-order finite volume schemes
to simulate shallow flows that are supposed to be governed by the one-layer or two-layer shallow water systems,
formulated under the form of a conservation law with source terms. The implementation of the scheme is carried
out on Graphics Processing Units (GPUs), thus achieving a substantial improvement of the speedup with respect
to normal CPUs. Finally, some numerical experiments are presented.
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1. Introduction

This article deals with the development of efficient GPU implementations of Finite Volume solvers on
structured and unstructured grids to solve 2d hyperbolic systems of conservation laws with source terms
and nonconservative products.

Problems of this nature arise, for example, in Computational Fluid Dynamics. We are concerned in
particular with the simulation of free-surface waves in shallow layers of homogeneous fluids or internal
waves in stratified fluids composed by two shallow layers of immiscible liquids. The motion of a layer
of homogeneous fluid is supposed here to be governed by the shallow water system, formulated under
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the form of a conservation law with source terms or balance law. In the stratified case, the flow is sup-
posed to be governed by a system composed by two coupled shallow water systems. The global system
can be formulated under the form of two coupled balance laws, the coupling terms having the form of
nonconservative products.

We are mainly interested in the application of these systems to geophysical flows: models based on
shallow water systems are useful for the simulation of rivers, channels, dambreak problems, ocean currents,
estuarine systems, etc. Simulating those phenomena gives place to very long lasting simulations in big
computational domains, so extremely efficient implementations are needed to be able to analyze those
problems in low computational time. Moreover, tsunami propagation or floods could require real time
calculation.

On the other hand, the numerical schemes to solve these equations usually exhibit a high degree of
potential data parallelism. These facts suggest the design of parallel versions of the numerical schemes
for parallel machines in order to solve and analyze these problems in reasonable execution times.

In this paper, we tackle the acceleration of several finite volume numerical schemes to solve one and
two-layer shallow water systems.

An interesting first order finite volume scheme to solve shallow water systems [1] has been parallelized
and optimized by combining a distributed implementation which runs on a PC cluster [1] with the use
of SSE-optimized routines [2]. However, despite of the important performance improvements, a greater
reduction of the runtimes is necessary in order to use these schemes in realistic applications.

A cost effective way of obtaining a substantially higher performance in these applications consists in us-
ing the modern Graphics Processor Units (GPUs). The use of these devices to accelerate computationally
intensive tasks is growing in popularity among the scientific and engineering community [3,4]. Modern
GPUs present a massively parallel architecture which includes hundreds of processing units optimized for
performing floating point operations and multithreaded execution. These architectures make it possible
to obtain performances that are orders of magnitude faster than a standard CPU at a very affordable
price.

There are previous proposals to implement finite volume one-layer shallow water solvers on GPUs by
using a graphics-specific programming language [5,6,7]. These solvers obtain considerable speedups to
simulate one-layer shallow water system but their graphics-based design is not easy to understand and
maintain.

Recently, NVIDIA has developed the CUDA programming toolkit [8] which includes an extension of
the C language and facilitates the programming of GPUs for general purpose applications by preventing
the programmer to deal with the graphics details of the GPU.

A CUDA solver for one-layer system based on the first order finite volume scheme presented in [1] is
described in [9] to deal with structured regular meshes. The extension of this CUDA solver to deal with
two-layer shallow water system is presented in [10]. There also exists proposals to implement high-order
schemes to simulate one-layer system using CUDA-enabled GPUs [11,12].

The structure of the paper is as follows: in Section 2, the one-layer and two-layer shallow water system
are introduced. Next, some comments about the difficulty of the definition of weak solutions for those
systems are given. In Section 4, the high-order finite volume scheme developed in [13] is reviewed. Next,
some details about the implementation on GPUS of the numerical schemes for structured and unstructured
meshes are presented as well as some numerical experiments. Finally, some conclusions are drawn in
Section 8.
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2. Equations

We consider a general problem consisting of a system of conservation laws with nonconservative products
and source terms given by:

∂U

∂t
+

∂F1

∂x
(U) +

∂F2

∂y
(U) = B1(U) ·

∂U

∂x
+ B2(U) ·

∂U

∂y

+ S1(U)
∂H

∂x
+ S2(U)

∂H

∂y
,

(1)

where U(x, t) : D × (0, T ) 7→ Ω ⊂ R
N , being D a bounded domain of R

2; x = (x, y) denotes an arbitrary
point of D; Ω is an open convex subset of R

N . Finally Fi : Ω 7→ R
N , Bi : Ω 7→ MN , Si : Ω 7→ R

N , i = 1, 2,
are regular functions, and H : D 7→ R is a known function. Observe that if B1 = B2 = 0 = S1 = S2 = 0,
(1) is a system of conservation laws, and if B1 = B2 = 0, (1) is a system of conservation laws with source
term (or balance laws).

Notice that the nonconservative products B1(U)∂xU , B2(U)∂yU , S1(U)∂xH , and S2(U)∂yH do not
make sense in the sense of distributions for discontinuous solutions. The problem of giving a sense to the
solution is a difficult task: we refer to [14].

Some examples of equations that fit into this abstract framework are the one-layer and two-layer shallow
water systems.

(i) One-layer shallow water system

The PDE system governing the flow of a shallow layer of fluid that occupies a subdomain D ⊂ R
2

can be written in the form (1) with:
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S1(U) =















0

gh

0















, S2(U) =















0

0

gh















, (4)

where H(x) is the depth function measured from a fixed level of reference; g is the gravity constant;
h(x, t) and q(x, t) = (qx(x, t), qy(x, t)) are, respectively, the thickness and the mass-flow of the
water layer at the point x at time t, that are related to the velocity u(x, t) = (ux(x, t), uy(x, t))
through the equality:
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q(x, t) = u(x, t)h(x, t).

Here, B1 = B2 = 0.

For the sake of simplicity friction terms are neglected.

(ii) Two-layer shallow water system

The system of equations governing the 2d flow of two superposed immiscible layers of shallow
fluids in a subdomain D ⊂ R

2, can be also written in the form (1) with:

U =
[

h1, q1,x, q1,y, h2, q2,x, q2,y

]T

, (5)
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, (6)

B1(U) =
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0 0 0 −gh1 0 0

0 0 0 0 0 0
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−rgh2 0 0 0 0 0

0 0 0 0 0 0





























, B2(U) =
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0 0 0 −gh1 0 0
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0 0 0 0 0 0

−rgh2 0 0 0 0 0





























, (7)

S1(x, U) =
[

0, gh1, 0, 0, gh2, 0
]T

, (8)

S2(x, U) =
[

0, 0, gh1, 0, 0, gh2

]T

. (9)

Index 1 makes reference to the upper layer and index 2 to the lower one. Again, g is the gravity and H(x),

the depth function measured from a fixed level of reference. r =
ρ1

ρ2
is the ratio of the constant densities

of the layers (ρ1 < ρ2) which, in realistic oceanographical applications, is close to 1. Finally, hi(x, t) and
qi(x, t) are, respectively, the thickness and the mass-flow of the i-th layer at the point x at time t, and
again they are related to the velocities ui(x, t) = (ui,x(x, t), ui,y(x, t)), i = 1, 2 by the equalities:

qi(x, t) = ui(x, t)hi(x, t), i = 1, 2.

Again, friction terms are neglected.
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Notice that system (1) can be rewritten as

Wt + A1(W )Wx + A2(W )Wy = 0, (10)

by considering W = [U, H ]T and

Ai(W ) =





Ji(U) − Bi(U) −Si(U)

0 0



 , i = 1, 2,

where Ji(U) =
∂Fi

∂U
(U), i = 1, 2 denote the Jacobians of the fluxes Fi, i = 1, 2.

3. Weak solutions

Let us consider system (10) where W (x, t) takes values on a convex domain Ω of R
N and Ai, i = 1, 2,

are two smooth and locally bounded matrix-valued functions from Ω to MN×N(R).
We assume that (10) is strictly hyperbolic, i.e. for all W ∈ Ω and ∀ η = (ηx, ηy) ∈ R

2, the matrix

A(W, η) = A1(W )ηx + A2(W )ηy

has N real and distinct eigenvalues

λ1(W, η) < · · · < λN (W, η).

A(W, η) is thus diagonalizable:

A(W, η) = K(W, η)Λ(W, η)K−1(W, η),

where Λ(W, η) is the diagonal matrix whose coefficients are the eigenvalues of A(W, η) and K(W, η)
is the matrix whose j-th column is an eigenvector Rj(W, η) associated to the eigenvalue λj(W, η), j =
1, . . . , N .

For discontinuous solutions W , the nonconservative products A1(W )Wx and A2(W )Wy do not make
sense as distributions. However, the theory developed by Dal Maso, LeFloch and Murat in [14] allows
to give a rigorous definition of nonconservative products as bounded measures provided that a family of
Lipschitz continuous paths Ψ: [0, 1] × Ω × Ω × S1 → Ω is prescribed, where S1 ⊂ R

2 denotes the unit
sphere. This family must satisfy certain natural regularity conditions, in particular:

(i) Ψ(0; WL, WR, η) = WL and Ψ(1;WL, WR, η) = WR, for any WL, WR ∈ Ω, η ∈ S1.

(ii) Ψ(s; WL, WR, η) = Ψ(1 − s; WR, WL,−η), for any WL, WR ∈ Ω, s ∈ [0, 1], η ∈ S1.

The choice of this family of paths should be based on the physics of the problem: for instance, it should
be based on the viscous profiles corresponding to a regularized system in which some of the neglected
terms (e.g. the viscous terms) are taken into account. Unfortunately, the explicit calculations of viscous
profiles for a regularization of (10) is a difficult task. An alternative is to choose the ’canonical’ choice
given by the family of segments:

Ψ(s; WL, WR, η) = WL + s(WR − WL), (11)

that corresponds to the definition of nonconservative products proposed by Volpert (see [15]).
Suppose that a family of paths Ψ in Ω has been chosen. Then a piecewise regular function W is a weak

solution of (10) if and only if the two following conditions are satisfied:

(i) W is a classical solution where it is smooth.
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(ii) At every point of a discontinuity W satisfies the jump condition

∫ 1

0

(

σI − A(Ψ(s; W−, W+, η), η)
)∂Ψ

∂s
(s; W−, W+, η) ds = 0, (12)

where I is the identity matrix; σ, the speed of propagation of the discontinuity; η a unit vector
normal to the discontinuity at the considered point; and W−, W+, the lateral limits of the solution
at the discontinuity.

As in conservative systems, together with the definition of weak solutions, a notion of entropy has to
be chosen. We will assume here that the system can be endowed with an entropy pair (η,G), i.e. a pair
of regular functions η : Ω → R and G = (G1, G2) : Ω → R

2 such that:

∇Gi(W ) = ∇η(W ) · Ai(W ), ∀ W ∈ Ω, i = 1, 2.

Then, a weak solution is said to be an entropy solution if it satisfies the inequality

∂tη(W ) + ∂xG1(W ) + ∂yG2(W ) ≤ 0,

in the sense of distributions.

4. High-order finite volume schemes

4.1. Roe method

To discretize (10) the computational domain D is decomposed into subsets with a simple geometry,
called cells or finite volumes: Vi ⊂ R

2. It is assumed that the cells are closed convex polygons whose
intersections are either empty, a complete edge or a vertex. Denote by T the mesh, i.e., the set of cells,
and by NV the number of cells. Here, we consider rectangular structured meshes or triangular non-
structured ones.

Given a finite volume Vi, |Vi| will represent its area; Ni ∈ R
2 its center; Ni the set of indexes j such

that Vj is a neighbor of Vi; Eij the common edge of two neighboring cells Vi and Vj , and |Eij | its length;
dij the distance from Ni to Eij ; ηij = (ηij,1, ηij,2) the normal unit vector at the edge Eij pointing towards
the cell Vj (see figure 1); ∆ the maximum of the diameters of the cells; Wn

i the constant approximation
to the average of the solution in the cell Vi at time tn provided by the numerical scheme:

Wn
i
∼=

1

|Vi|

∫

Vi

W (x, tn) dx.

Given a family of paths Ψ, a Roe linearization of system (10) is a function

AΨ : Ω × Ω × S1 → MN (R)

satisfying the following properties for each WL, WR ∈ Ω and η ∈ S1:

(i) AΨ(WL, WR, η) has N distinct real eigenvalues

λ1(WL, WR, η) < λ2(WL, WR, η) < · · · < λN (WL, WR, η).

(ii) AΨ(W, W, η) = A(W, η).

(iii) AΨ(WL, WR, η) · (WR − WL) =
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Figure 1. Finite volume discretization.

∫ 1

0

A(Ψ(s; WL, WR, η), η)
∂Ψ

∂s
(s; WL, WR, η) ds. (13)

We denote by ΛΨ(WL, WR, η) the diagonal matrix whose coefficients are the eigenvalues λj(WL, WR, η)
and let KΨ(WL, WR, η) be the associated eigenvectors matrix. Let us define the positive and negative
parts of AΨ(WL, WR, η) as

A±
Ψ(WL, WR, η) = KΨ(WL, WR, η) · Λ±

Ψ(WL, WR, η) · KΨ(WL, WR, η)−1,

where Λ+
Ψ(WL, WR, η) (respectively, Λ−

Ψ(WL, WR, η)) is the diagonal matrix whose coefficients are the
positive (respectively, negative) parts of the eigenvalues λj(WL, WR, η).

In the particular case in which Ak(W ), k = 1, 2, is the Jacobian matrix of a smooth flux function
Fk(W ), property (13) does not depend on the family of paths and reduces to the usual Roe property:

AΨ(WL, WR, η) · (WR − WL) = Fη(WR) − Fη(WL) (14)

for any η ∈ S1.
The general expression of a Roe scheme in upwind form for solving (10) is given by ([13]):

Wn+1
i = Wn

i −
∆t

|Vi|

∑

j∈Ni

|Eij |A
−
ij · (W

n
j − Wn

i ) (15)

where
A−

ij = A−
Ψ(Wn

i , Wn
j , ηij).

Additionally, a CFL condition must be imposed to ensure stability:

∆t · max

{

|λij,k|

dij

; i = 1, . . . , NV, j ∈ Ni, k = 1, . . . , N

}

= δ, (16)

with 0 < δ ≤ 1.
Remark 1 Note that in order to define the Roe solver, the spectral decomposition of the matrices Aij

must be performed. In the case of the one-layer shallow water system, the eigenvalues and eigenvectors
are explicitly known, but this is not the case for the two-layer shallow water system, where a numerical
algorithm must be used to compute the spectral decomposition. This fact makes the Roe solver more
computationally expensive when it is applied to the two-layer shallow water system.

As in the case of systems of conservation laws, when sonic rarefaction waves appear it is necessary to
modify the numerical scheme in order to obtain entropy-satisfying solutions. For instance, the Harten-
Hyman entropy fix technique ([17]) can be easily adapted here.
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Some general results concerning the consistency and well-balanced properties of Roe schemes have been
studied in [13]. In [18] and [19] it has been proved that, in general, the numerical solutions provided by
a path-conservative numerical scheme converge to functions which solve a perturbed system in which
an error source term appears on the right-hand side. The appearance of this source term, which is a
measure supported on the discontinuities, has been first observed in [20] when a scalar conservation law
is discretized by means of a nonconservative numerical method. Nevertheless, in certain special situations
the convergence error vanishes for finite difference methods: this is the case for systems of balance laws
(see [21]). Moreover for more general problems, even when the convergence error is present, it may be only
noticeable for very fine meshes, for discontinuities of large amplitude, and/or for large-time simulations:
see [18], [19] for details.

4.2. High-order extension

In this section we describe a high-order extension of scheme (15). Let us consider first a reconstruction
operator, i.e., an operator that associates to a given family {Wi}NV

i=1 of cell values two families of functions
defined at the edges:

γ ∈ Eij 7→ W±
ij (γ)

in such a way that, whenever

Wi =
1

|Vi|

∫

Vi

W (x) dx (17)

for some smooth function W , then

W±
ij (γ) = W (γ) + O(∆p), γ ∈ Eij .

It will be assumed that the reconstructions are calculated in the following way: given the family {Wi}NV
i=1

of cell values, an approximation function is constructed at every cell Vi, based on the values Wj at some
stencil of neighboring cells to Vi:

Pi(x) = Pi (x; {Wj}j∈Bi
)

for some set of indexes Bi. These approximation functions are usually constructed by means of interpo-
lation or approximation methods. The reconstructions at γ ∈ Eij are defined as

W−
ij (γ) = lim

x→γ
Pi(x), W+

ij (γ) = lim
x→γ

Pj(x). (18)

Clearly, for any γ ∈ Eij the following equalities are satisfied:

W−
ij (γ) = W+

ji (γ), W+
ij (γ) = W−

ji (γ).

The reconstruction operator is assumed to satisfy the following properties:

(H1) It is conservative, i.e., the following equality holds for any cell Vi:

Wi =
1

|Vi|

∫

Vi

Pi(x)dx. (19)

(H2) It is of order p, in the sense that

W (γ) − W±
ij (γ) = ∆pgij(γ) + O(∆p+1), γ ∈ Eij

being gij a regular function.

(H3) It is of order q in the interior of the cells, i.e., if the operator is applied to a sequence {Wi} satisfying
(17) for some smooth function W (x), then

Pi(x) = W (x) + O(∆q), x ∈ int(Vi). (20)
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(H4) The gradient of Pi provides an approximation of order m to the gradient of W :

∇Pi(x) = ∇W (x) + O(∆m), x ∈ int(Vi). (21)

The semidiscrete expression of the high-order extension of scheme (15), based on a given reconstruction
operator, is the following (see [13] for more details):

W ′
i (t) = −

1

|Vi|

[

∑

j∈Ni

∫

Eij

A−
ij(γ, t)

(

W+
ij (γ, t) − W−

ij (γ, t)
)

dγ

+

∫

Vi

(

A1(P
t
i (x))

∂P t
i

∂x
(x

)

+ A2(P
t
i (x))

∂P t
i

∂y
(x)

)

dx

] (22)

where P t
i is the approximation function at time t:

P t
i (x) = Pi (x; {Wj(t)}j∈Bi

) ,

W±
ij (γ, t) are given by

W−
ij (γ, t) = lim

x→γ
P t

i (x), W+
ij (γ, t) = lim

x→γ
P t

j (x), (23)

and
Aij(γ, t) = AΨ

(

W−
ij (γ, t), W+

ij (γ, t), ηij

)

.

The following result can be proved (see [13]):
Theorem 4.1 Assume that A1 and A2 are of class C2 with bounded derivatives and AΨ is bounded. Sup-
pose also that the reconstruction operator satisfies hypotheses (H1)–(H4). Then (22) is an approximation
of order at least α = min(p, q, m).
Remark 2 The conclusion of theorem 4.1 is rather pessimistic: the observed order in experiments is usually
α = min(p, q, m + 1). See [13] for more details.

In practice, the integral terms in (22) must be approximated numerically. A one-dimensional quadrature
formula of order r̄ is applied to calculate the line integrals:

∫ b

a

f(s)ds = (b − a)

( n(r̄)
∑

l=1

ωlf(xl)

)

+ O(∆r̄), (24)

while a two-dimensional quadrature formula of order s̄ is used to compute the volume integrals:

∫

Vi

f(x) dx = |Vi|

n(s̄)
∑

l=1

αlf(xi
l) + O(|Vi|

s̄). (25)

To preserve the order of the numerical scheme, it is necessary to have r̄ ≥ α and s̄ ≥ α.
Finally, the numerical scheme is written as follows:

W ′
i (t) = −

1

|Vi|

[

∑

j∈Ni

|Eij |

n(r̄)
∑

l=1

wlA
−
ij,l(t)

(

W+
ij,l(t) − W−

ij,l(t)
)

+ |Vi|

n(s̄)
∑

l=1

αl

(

A1(P
t
i (xi

l))
∂P t

i

∂x
(xi

l

)

+ A2(P
t
i (xi

l))
∂P t

i

∂y
(xi

l)

)

]

(26)

where
W±

ij,l(t) = W±
ij (aij + sl(bij − aij), t)

and
Aij,l(t) = AΨ(W−

ij,l(t), W
+
ij,l(t), ηij),

being aij and bij the vertices of edge Eij .
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Remark 3 A technique that avoids the explicit computation of ∇Pi(x) has been introduced in [22] in
the one-dimensional case. The use of this technique, that is based on the trapezoidal rule and Romberg
extrapolation, makes the expected order of accuracy to be min(p, q). The extension to two-dimensional
problems is straightforward for structured meshes, while for unstructured meshes a Romberg extrapolation
formula for triangles can be used (see [23]).

For time stepping, high-order TVD Runge-Kutta methods like those described in [24] are applied. In
particular, in this work we use a third-order reconstruction operator in space and a third-order TVD
Runge-Kutta method to advance in time.

The reconstruction operator used here is the one proposed in [25]: it is a compact reconstruction
operator of polynomial type, that is third-order accurate on each computational cell and it can be defined
in general non-uniform quadrilateral meshes.

The well-balancedness properties of schemes (22) and (26) have been analyzed in [13].

5. CUDA architecture and programming model

According to the CUDA framework, both the CPU and the GPU maintain their own memory. It is
possible to copy data from CPU memory to GPU memory and vice versa.

The GPU is formed by a set of Single Instruction Multiple Data (SIMD) multiprocessors, each one
having 32 processors (M = 32) in Fermi architecture and 8 processors (M = 8) in GT200 architecture
(see Figure 2). At any clock cycle, each processor of the multiprocessor executes the same instruction,
but operates on different data.

Figure 2. GPU architecture.
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A function executed on the GPU is called a kernel. A kernel is executed by many threads which are
organized forming a grid of thread blocks that run logically in parallel [26]. All blocks and threads have
spatial indices, so that the spatial position of each thread could be identified in the program. Each thread
block runs in a single multiprocessor. A warp is the number of threads that can run concurrently in
a multiprocessor. Warp size is 32 threads. Each block is split into warps, and periodically a scheduler
switches from one warp to another. This allows to hide the high latency when accessing the GPU memory,
since some threads can continue their execution while other threads are waiting.

A thread that executes on the GPU has access to the following memory spaces:
– Registers: Each thread has its own readable and writable registers.
– Shared memory: Shared by all threads of a block. Readable and writable only from the GPU. In

Fermi architecture, its size is configurable and can be 16 or 48 KB. It is faster than global memory.
– Global memory: Shared by all blocks of a grid. Readable and writable from CPU and GPU. It is slow

due to its high latency.
– Constant memory: Shared by all blocks of a grid. Readable from GPU and writable from CPU. Its

size is 64 KB and it is cached, making it faster than global memory if the data is in cache. Cache
size is 8 KB per multiprocessor.

– Texture memory: Shared by all blocks of a grid. Readable from GPU and writable from CPU. It is
cached and optimized from 2D spatial locality, i.e. it is especially suited for each thread to access its
closer neighborhood in texture memory. Cache size varies between 6 and 8 KB per multiprocessor.

In Fermi architecture, each multiprocessor has 32768 registers, which are split and assigned to the
threads that execute concurrently on that multiprocessor.

6. Structured meshes

In this section we outline the parallelization of the numerical scheme and describe the details of our
CUDA implementations for dealing with the high-order numerical scheme for the one-layer shallow water
system on structured meshes.

6.1. Parallelization

In this section we briefly describe the potential data parallelism of the numerical scheme described in
the previous section and its implementation in CUDA.

Initially, the finite volume mesh must be constructed from the input data with the appropriate setting of
initial and boundary conditions. Then the time stepping is performed by applying a third-order Runge-
Kutta TVD method, consisting on three steps. At each step, the spatial discretization (26) must be
performed as follows:

(i) Reconstruction and volume integral computation: First a reconstruction procedure at each
cell and for each variable must be performed to define the functions Pi(x). Next, the numerical
approximation of the volume integral is computed using a third-order Gaussian quadrature formula

Σi = −|Vi|

n(s̄)
∑

l=1

αl

(

A1(P
t
i (xi

l))
∂P t

i

∂x
(xi

l

)

+ A2(P
t
i (xi

l))
∂P t

i

∂y
(xi

l)

)

The reconstructed values Wij,l at the quadrature points of each edge of the cell Vi are also computed.
Again, a third-order Gaussian quadrature formula is used. Therefore, two values must be computed
at each edge of Vi.
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(ii) Edge-based calculations: The following computations must be performed at each edge Eij com-
mon to cells Vi and Vj , using the reconstructed values W−

ij,l and W+
ij,l previously computed:

Σ±
ij = |Eij |

n(r̄)
∑

l=1

wlA
−
ij,l(t)

(

W+
ij,l(t) − W−

ij,l(t)
)

.

(iii) Volume-based calculations: At each cell Vi, the following computations must be performed:
a) Computation of the local ∆ti for each volume.
b) Computation of W

n+1,s
i : The n+1, s-th state of each volume must be approximated from the

n-th and the n + 1, s − 1-th states using the data computed at the previous steps.

Several remarks can be made related to the description of the parallel algorithm. The computation steps
required by the problem addressed here can be classified into two groups: computations associated to edges
and computations associated to volumes. The scheme exhibits a high degree of data parallelism because the
computation at each edge/volume is independent with respect to the computation performed at the rest of
edges/volumes. Moreover, the scheme presents a high arithmetic intensity and the computation exhibits
a high degree of locality. These remarks indicate that this problem is suitable for being implemented on
GPUs using CUDA.

Concerning the implementation, each processing step previously described is assigned to a CUDA
kernel. Let us describe the implementation of a high-order scheme for the one-layer shallow water system
on structured meshes using CUDA. More details can be found in [9] and [25].

– Build the data structure: For each volume, we store its state W = [U, H ]. In the case of the
one-layer shallow water system U = [h, qx, qy]. We define an array of float4 1 elements, where each
element represents a volume and contains the former parameters. This array is stored as a 2D texture
since texture memory is especially suited for each thread to access its closer environment in texture
memory. The per-block shared memory, on the other hand, is more suitable when each thread needs
to access many elements located in global memory, and each thread of a block loads a small part of
these elements into shared memory. We first implemented a CUDA program using shared memory
instead of a texture, where each thread of a block loaded the data of a volume into shared memory,
but later we got better execution times by using a texture.

The area of the volumes and the length of the vertical and horizontal edges are precalculated and
passed to the CUDA kernels that need them.

We can know at runtime if an edge or volume is frontier or not and the value of ηij at an edge by
checking the position of the thread in the grid.

– Reconstruction and integral computation: In this step, the reconstruction values U±
ij,l, l = 1, 2,

as well as the reconstructed topography H±
il,j are computed and stored in four arrays located in global

memory, each one being an array of float4 elements. The size of each array is twice the number of
volumes and they are associated to the four edges of a cell (south, north, east and west). Moreover,
the integral term Σi is also computed and stored in an accumulator placed in global memory. This
accumulator is an array of float4 elements and its size is the number of volumes. This accumulator
is also used to store the contributions of the vertical edges. In this process, each thread represents a
finite volume cell.

– Process vertical and horizontal edges: We divide the edge processing into vertical and horizontal
edge processing. For vertical edges ηij,y = 0, and for horizontal edges ηij,x = 0. Therefore, all the
operations where these terms take part can be avoided, thus increasing efficiency.

Here, each thread represents a vertical or a horizontal edge, and computes the contribution to their
adjacent volumes.

1. The float4 data type represent structures with four single precision real components
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The edges (i.e., threads) synchronize each other when contributing to a particular volume by
means of two accumulators stored in global memory, each one being an array of float4 elements.
Note that one of them has been previously used to store the integral cell computation. The size
of each accumulator is the number of volumes. Each element of the accumulators stores the edge
contributions to the volume (a 3×1 vector, Σ±

ij , and a float value storing ‖Λij‖∞). In the processing
of vertical edges, each edge writes the contribution to its right-side volume in the first accumulator,
and the contribution to its left-side volume in the second accumulator. Next, the processing of
horizontal edges is performed in an analogous way, with the difference that the contribution is added
to the accumulators.

– Compute ∆ti for each volume: In this step, each thread represents a volume and the local ∆ti
of the volume Vi is computed using the CFL condition (16).

– Get the minimum ∆t: This step finds the minimum of the local ∆ti of the volumes by applying a
reduction algorithm on the GPU. The reduction algorithm applied is the kernel 7 (the most optimized
one) of the reduction sample included in the CUDA Software Development Kit [8].

– Compute U
n+1,s
i for each volume: In this step, each thread represents a volume and the state Ui

of the volume Vi is updated. The final value is obtained by adding up the two 3 × 1 vectors stored
in the positions corresponding to the volume Vi in both accumulators (Note that the topography is
an artificial unknown and it does not change during the computation). Since a CUDA kernel cannot
directly write into textures, the texture is initially updated by writing the results into a temporal
array, which is then copied to the CUDA array bound to the texture.

6.2. Numerical experiments

Different implementations of the scheme have been performed: a sequential CPU code was written in
C++ using double precision using the Eigen library [27], denoted by ’CPU 1 core’. A quadcore CPU code
using OpenMP [28] denoted by ’CPU 4 cores’, a GPU code implemented using Cg [6] and single precision,
denoted by ’Cg’, a GPU code implemented in CUDA using single precision, denoted by ’CUSP’, and a
GPU code implemented in CUDA using double precision, denoted by ’CUDP’. The CPU was an Intel
Xeon E5430 (2.66 GHz 12MB L2 Cache), while two different GPUs have been used: a NVIDIA GeForce
GTX 260 (216 stream processors with 896 MB) and a NVIDIA GeForce GTX 280 (240 stream processors
with 1 GB).

As test problem, we consider a circular dambreak problem in the [−5, 5] × [−5, 5] domain. The depth

function is H(x, y) = 1 − 0.4 e−x2
−y2

and the initial condition is:

W 0
i (x, y) =











h0(x, y)

0

0











, where h0(x, y) =







1 + H(x, y) if
√

x2 + y2 > 0.6

3 + H(x, y) otherwise

The numerical schemes are run for different mesh sizes. Simulations are carried out in the time interval
[0,1]. CFL parameter is δ = 0.9 and wall boundary conditions (q · η = 0) are considered. Figure 3 shows
the evolution of the free surface (η = h−H) computed for the second mesh using the high order scheme.

Tables 1 and 2 show the execution times in seconds for all the meshes and programs. As can be seen,
the execution times seems to grow linearly with the number of volumes of the mesh, as expected. Figures
4 and 5 show graphically the speedup obtained in all the implementations with respect to the monocore
version.

Concerning the first order numerical scheme on structured meshes (see Table 1 and Figure 4) we can
see that the execution times of the single precision CUDA program (CUSP) outperform that of Cg in
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(a) t=0 s (b) t=0.5 s

(c) t=1.0 s

Figure 3. Evolution of the free surface: third order numerical scheme

CPU CPU GTX 260 GTX 280

Volumes 1 core 4 cores Cg CUSP CUDP Cg CUSP CUDP

100 × 100 0.8 0.26 0.11 0.01 0.06 0.08 0.01 0.05

200 × 200 6.7 1.98 0.26 0.06 0.37 0.2 0.06 0.32

400 × 400 56.6 26.57 0.84 0.39 2.75 0.68 0.35 2.34

800 × 800 455.9 216.5 4.42 2.91 21.43 3.75 2.48 18.49

1600 × 1600 3639.9 1722.8 30.72 23.44 167.2 26.14 19.27 143.0

2000 × 2000 7135.7 3375.4 58.54 44.87 336.9 49.48 38.34 272.0

Table 1
Structured meshes: Execution times in seconds for all meshes and programs (first order)

all cases with both graphics cards. Using a GTX 280, for big problems, CUSP achieves a speedup of
two orders of magnitude with respect to the monocore version, reaching a performance gain of more
than 180 (see Figure 4(a)). The double precision CUDA program (CUDP) has been about 7 times slower
than CUSP for big problems in both graphics cards (see 4(b)), which seems logical considering that, in
GT200 architecture, each multiprocessor has 8 single precision units and only one double precision unit.
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CPU GTX 260 GTX 280

Volumes 1 core CUSP CUSP

100 × 100 2.36 0.025 0.024

200 × 200 19.0 0.18 0.15

400 × 400 152.10 1.36 1.31

800 × 800 1218.32 10.89 9.47

1200 × 1200 4068.0 36.16 30.01

Table 2
Structured meshes: Execution times in seconds for all the meshes and programs (third order)

As expected, the OpenMP version only reaches a speedup less than four with respect to the monocore
program in all meshes (see Figure 4).

Similar results are obtained for the high-order numerical scheme on structured meshes (see Table 2 and
Figure 5), reaching a performance of about 140 with respect to the monocore version.

We also have compared the numerical solutions obtained in the monocore and the CUDA programs.
The L1 norm of the difference between the solutions obtained in CPU and GPU at time t = 1.0 for all
meshes was calculated. The order of magnitude of the L1 norm using CUSP varies between 10−4 and 10−6,
while that obtained using CUDP varies between 10−12 and 10−14, which reflects the different accuracy
of the numerical solutions computed on the GPU using single and double precision.
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(a) Single precision
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(b) Double precision

Figure 4. First order scheme: speedup on structured meshes. Single precision (left). Double precision (right).

7. Unstructured triangular meshes

In this section we outline the parallelization of the numerical scheme and describe the details of our
CUDA implementations for dealing with one and two-layer first order shallow water systems on triangular
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Figure 5. High-order scheme: speedup on non-structured meshes (single precision).

meshes.

7.1. Parallelization

Figure 6 shows a graphical description of the parallel algorithm, obtained from the mathematical
description of the numerical scheme. In this figure, the main calculation phases are identified with circled
numbers and the main sources of data parallelism are represented with overlapping rectangles indicating
that the calculation affected by it can be performed simultaneously for each data item of a set (the data
items can represent the volumes or the edges of the finite volume mesh). The arrows connecting two
computing phases represent data dependencies between the two phases.

Initially, the finite volume mesh is constructed from the input data. Then the time stepping process is
repeated until the final simulation time is reached. At the (n + 1)-th time step, Equation (15) must be
evaluated to update the state of each cell. In order to add the contributions associated to each edge, two
variables are used in the algorithm for each volume Vi (i = 1, . . . , L): Zi is used to store the contributions
to the local time step size of the volume Vi and Mi is used to store the sum of the contributions to the
state of Vi. Mi is a 3× 1 vector for the one-layer case and a 6× 1 vector for the two-layer case. The type
of the rest of variables which appear in Figure 6 also depends on the case.

Each of the main calculation phases of the evaluation present a high degree of parallelism because the
computation at each edge or volume is independent with respect to that performed or associated to the
other edges or volumes:

1. Edge-based calculations: This is the most costly phase in the algorithm and involves two calcu-
lations for each edge Eij communicating two cells Vi and Vj (i, j ∈ {1, . . . , L}):

a) Vector Mij = |Eij |F
−
ij , where F−

ij = A−
ij · (W

n
j − Wn

i ) in Equation (15), must be computed
as the contribution of each edge to the sum associated to the adjacent cells Vi and Vj . This
contribution can be computed independently for each edge and must be added to the partial
sums associated to each cell (Mi and Mj).

In the one-layer-case, to compute F−
ij , the mathematical expression for the matrices Λij and

Kij is known, and these matrices are computed directly by evaluating these expressions. On
the other hand, in the two-layer case, the matrices are obtained by using a particular algorithm
to find the the eigenvalues and eigenvectors of the matrix Aij ∈ IR6×6.
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Figure 6. Main calculation phases in the parallel algorithm

b) The value Zij = |Eij | ‖ Λij ‖∞ can be computed independently for each edge and added to
the partial sums associated to each cell (Zi and Zj) as an intermediate step to compute the
n-th time step ∆tn.

2. Computation of the local ∆t for each volume: In practice, Equation (16) can be replaced
by the condition ∆t = min{∆ti}, being ∆ti = 2 δ |Vi|Z

−1
i . For each volume Vi, the local ∆t is

computed. The computation for each volume does not depend on the computation for the rest of
volumes and therefore this phase can be performed in parallel.

3. Computation of ∆tn: The minimum of all the local ∆t values previously obtained for each volume
must be computed.

4. Computation of Wn+1
i : The (n + 1)-th state of each volume (Wn+1

i ) must be approximated from
the n-th state using the data computed in the previous phases. This phase can also be completed
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Figure 7. General steps of the CUDA algorithm for one and two-layer.

in parallel (see Figure 6).

Since the numerical scheme exhibits a high degree of potential data parallelism (mainly in phases 1, 2
and 4), it is a good candidate to be implemented on CUDA architectures.

7.2. One-layer

7.2.1. Details of the CUDA implementation
In this section we describe the CUDA implementation of the parallel algorithm we have developed for

one-layer shallow water system using single precision that we denoted CUSP hereafter. It is a variant
of the algorithm described in [9] for triangular meshes. The general steps of the parallel algorithm are
depicted in Figure 7. Each processing step executed on the GPU is assigned to a CUDA kernel. Next, we
describe in detail each step:

– Build data structure: In this step, the data structure that will be used on the GPU is built. For
each volume, we store its initial state (h, qx and qy), its depth H and its area. We define an array
of float4 elements and another array of float elements. The size of both arrays is the number of
volumes. The first array contains h, qx, qy and H , and is stored as 1D texture. The second array
contains the area of the volumes and is stored in global memory.

For each edge, we store its normal (ηij,x, ηij,y), the positions of the volumes Vi and Vj in the former
arrays, and the two accumulators (denoted by an int value: 1, 2 or 3) where the edge must write
its contributions to the volumes Vi and Vj , respectively. We use two arrays in global memory, where
the size of each array is the number of edges: an array of float2 elements to store the normal, and
another array of int4 elements to store the last four integer values.

We can know at runtime if an edge is frontier by checking if the value of the position of the volume
Vj is -1.

– Process edges: In [9], since we were working with regular meshes, we divided the edge processing
into vertical and horizontal edge processing, hence allowing some terms of the numerical scheme
to be removed, increasing efficiency. For triangular meshes, this is not possible. Therefore, we must
compute the whole numerical scheme and we use a single kernel for processing all the edges.
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Figure 8. Computing the sum of the contributions of the edges of each volume for the one-layer case.

In the edge processing, each thread represents an edge, and computes the contribution of the edge
to their adjacent volumes as described in section 7.1.

The edges (i.e. threads) synchronize each other when contributing to a particular volume by means
of three accumulators (in [9] we used two accumulators for regular meshes), each one being an array
of float4 elements. The size of each accumulator is the number of volumes. Each element of the
accumulators stores the contributions of the edges to Wi (the 3 × 1 vector Mi in Figure 6 ) and to
the local ∆t of the volume (the float value Zi in Figure 6). Figure 8 shows this process graphically.

– Compute ∆ti for each volume: In this step, each thread represents a volume and computes the
local ∆ti of the volume Vi as described in section 7.1. The final Zi value is obtained by adding the
three float values stored in the positions corresponding to the volume Vi in the accumulators.

– Get minimum ∆t: This step finds the minimum of the local ∆ti of the volumes by applying a
reduction algorithm on the GPU. The reduction algorithm applied is the kernel 7 (the most optimized
one) of the reduction sample included in the CUDA Software Development Kit [8].

– Compute Wi for each volume: In this step, each thread represents a volume and updates the
state Wi of the volume Vi as described in section 7.1. The final Mi value is obtained by adding the
three 3× 1 vectors stored in the positions corresponding to the volume Vi in the accumulators. Since
the 1D texture containing the volume data is stored in linear memory, we update the texture by
writing directly into it.

As in the case of structured meshes, several implementations have been performed. Let us remark that
the data structure designed for the CUDP implementation has same differences with respect to the CUSP
implementation: the volume data is stored in two arrays of double2 2 elements (which contain the state
and the depth of the volumes) and one array of double elements (which contain the area of the volumes).
The normal vectors of the edges are stored in an array of double2 elements. We use three accumulators
of double2 elements, where the size of each accumulator is twice the number of volumes.

7.2.2. Experimental Results
We consider a test problem consisting in a circular dambreak problem in the [−5, 5]×[−5, 5] rectangular

domain. The depth function is given by H(x, y) = 4 − 1.5 e−x2
−y2

and the initial condition is:

W 0
i (x, y) = (h(x, y), 0, 0)

T

2. The double2 data type represents structures with two double precision real components. Note that float4 and double2

data types require the same amount of memory (16 bytes).
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(a) t=0 s (b) t=0.4 s

(c) t=0.8 s

Figure 9. Evolution of the free surface

where

h(x, y) =







2.5 if
√

x2 + y2 > 1

5 otherwise

The numerical scheme is run for several triangular finite volume meshes with different number of
volumes (see Table 3). Simulation is carried out in the time interval [0, 1]. CFL parameter is δ = 0.9 and
wall boundary conditions (q · η = 0) are considered.

The four implementations previously described have been used to perform the numerical experiments.
All the programs were executed on a Core i7 920 with 4 GB RAM. Graphics cards used were a GeForce
GTX 260 and a GeForce GTX 480. The evolution of the free surface (η = h − H) computed with the
third mesh is shown in Figure 9 for several time steps.

Table 3 shows the execution times in seconds for all the meshes and programs. As can be seen, the
number of volumes and the execution times scale with a different factor because the number of time
steps required for the same time interval also augments when the number of cells is increased. Figure
10 shows graphically the speedups obtained in the CUDA and OpenMP implementations with respect
to the monocore CPU version using both graphics cards. For big meshes, CUSP achieves a speedup of
approximately 150 in the GTX 480 card, and a speedup of 80 in the GTX 260. On the other hand, CUDP
reaches a speedup of 40 in the GTX 480 card, and 13 in the GTX 260. The OpenMP version has only
reached a speedup of 2.6 for big meshes. CUDP has been 3.6 times slower than CUSP for big meshes in
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CPU CPU GTX 260 GTX 480

Mesh size 1 core 4 cores CUSP CUDP CUSP CUDP

4016 0.25 0.073 0.015 0.049 0.0081 0.018

16040 2.20 0.63 0.052 0.26 0.029 0.085

64052 20.72 7.75 0.30 1.79 0.17 0.57

256576 176.0 67.87 2.25 13.83 1.25 4.40

1001898 1408.6 551.8 17.16 104.4 9.23 34.06

Table 3
Execution times in seconds for all the meshes and programs for the one-layer case.
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Figure 10. Speedups obtained in the CUDA and OpenMP implementations in all meshes for the one-layer case.

the GTX 480 card, and 6.1 times slower in the GTX 260. As can be seen, the speedups reached with both
CUDA programs are worse than those obtained in [9] applying the same numerical scheme on regular
meshes.

In the GTX 480 card, we get better execution times by setting the sizes of the L1 cache and shared
memory to 48 KB and 16 KB per multiprocessor, respectively, for the edge processing CUDA kernel.

We also have compared the numerical solutions obtained in the monocore and the CUDA programs.
The L1 norm of the difference between the solutions obtained in CPU and GPU at time t = 1.0 for all
meshes was calculated. The order of magnitude of the L1 norm using CUSP varies between 10−3 and
10−5, while that of obtained using CUDP varies between 10−13 and 10−14, which reflects the different
accuracy of the numerical solutions computed on the GPU using single and double precision.

7.3. Two-layer

7.3.1. Details of the CUDA implementation
In this section we describe the CUDA implementation of the parallel algorithm we have developed for

two-layer shallow water system. It is a variant of the algorithm described in [10] for triangular meshes.
The general steps of the parallel algorithm are the same of the one-layer case and are depicted in Figure
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Figure 11. Computing the sum of the contributions of the edges of each volume for the two-layer case.

7. Next, we describe the differences with respect to the one-layer implementation detailed in 7.2.1:
– Build data structure: For each volume, we store its initial state (h1, q1,x, q1,y, h2, q2,x and q2,y),

its depth H and its area. We define two arrays of float4 elements, where each element represents a
volume. The first array contains h1, q1,x, q1,y and H , while the second array contains h2, q2,x, q2,y

and the area. Both arrays are stored as 1D textures.
The data stored for each edge and the arrays used for this purpose are the same as the one-layer

implementation.
– Process edges: As in the one-layer case, in this step each thread represents an edge, and computes

the contribution of the edge to their adjacent volumes as described in section 7.1.
The edges (i.e. threads) synchronize each other when contributing to a particular volume by means

of six accumulators (in [10] we used four accumulators for regular meshes), each one being an array of
float4 elements. The size of each accumulator is the number of volumes. Let us call the accumulators
1-1, 1-2, 2-1, 2-2, 3-1 and 3-2. Each element of accumulators 1-1, 2-1 and 3-1 stores the contributions
of the edges to the layer 1 of Wi (the first 3 elements of Mi) and to the local ∆t of the volume (a
float value Zi), while each element of accumulators 1-2, 2-2 and 3-2 stores the contributions of the
edges to the layer 2 of Wi (the last 3 elements of Mi). Figure 11 shows this process graphically.

– Compute ∆ti for each volume: In this step, each thread represents a volume and computes the
local ∆ti of the volume Vi as described in section 7.1. The final Zi value is obtained by adding the
three float values stored in the positions corresponding to the volume Vi in accumulators 1-1, 2-1
and 3-1.

– Get minimum ∆t: Equal to the one-layer implementation.
– Compute Wi for each volume: In this step, each thread represents a volume and updates the state

Wi of the volume Vi as described in section 7.1. The final Mi value is obtained as follows: the first
3 elements of Mi (the contribution to layer 1) are obtained by adding the three 3 × 1 vectors stored
in the positions corresponding to the volume Vi in accumulators 1-1, 2-1 and 3-1, while the last 3
elements of Mi (the contribution to layer 2) are obtained by adding the two 3 × 1 vectors stored in
the positions corresponding to the volume Vi in accumulators 1-2, 2-2 and 3-2. Since the 1D textures
containing the volume data are stored in linear memory, we update the textures by writing directly
into them.

Again, several implementations have been performed to compare the efficiency of the CUDA programs:
in this particular case the CUSP implementation does not provide good results. A mixed precision CUDA
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implementation (CUSDP) is considered. In this case, the eigenvalues and eigenvectors of the Aij matrix
are computed using double precision to avoid numerical instability problems, but the rest of operations
are performed in single precision.

In CUDP implementation, the volume data is stored in three arrays of double2 elements (which contain
the state of the volumes), and another array of double2 elements to store the depth H and the area.
The normal vectors of the edges are stored in an array of double2 elements. We use three accumulators
of double2 elements to store the contributions to Wi, where the size of each accumulator is three times
the number of volumes. We also use three accumulators of double elements to store the contributions to
the local ∆t of each volume, where the size of each accumulator is the number of volumes.

7.3.2. Experimental Results
We consider an internal circular dambreak problem in the [−5, 5]× [−5, 5] rectangular domain in order

to compare the performance of our implementations. The depth function is given by H(x, y) = 5 and the
initial condition is:

W 0
i (x, y) = (h1(x, y), 0, 0, h2(x, y), 0, 0)T

where

h1(x, y) =







4 if
√

x2 + y2 > 1.5

0.5 otherwise
, h2(x, y) = 5 − h1(x, y)

The numerical scheme is run for several triangular finite volume meshes with different number of
volumes (see Table 4). Simulation is carried out in the time interval [0, 1]. CFL parameter is δ = 0.9,
r = 0.998 and wall boundary conditions (q1 · η = 0, q2 · η = 0) are considered.

In the CUDA implementations, the eigenvalues and eigenvectors of the Aij matrix are computed using
the rg subroutine of the EISPACK library [30], converted to C code using the f2c utility.

All the programs were executed on a Core i7 920 with 4 GB RAM. Graphics card used was a GeForce
GTX 260.

Figure 12 shows the evolution of the free surface (η = h1 + h2 −H) and the interface (ηi = h2 −H) of
the fluid computed using the third mesh, for several time steps.

Table 4 shows the execution times in seconds for all the meshes and programs. Figure 13 shows graph-
ically the speedups obtained in the CUDA and OpenMP implementations with respect to the monocore
CPU version. For big meshes, CUSDP achieves a speedup of 10, while CUDP reaches a speedup of more
than 6. The OpenMP version has reached a speedup of 3.2 for big meshes. It is worth noting that for small
meshes, CUDP has got slightly better execution times than CUSDP, although for big meshes CUSDP
has been faster. As it happened in the one-layer case, the speedups reached with both CUDA programs
are worse than those obtained in [10] applying the same numerical scheme on regular meshes.

As can be seen, the speedups reached with the CUSDP implementation are notably worse than those
obtained for CUSP in one-layer systems. This is mainly due to two reasons. Firstly, since double precision
has been used to compute the eigenvalues and eigenvectors (see Remark 1), the efficiency is reduced
because the double precision speed is 1/8 of the single precision speed in GeForce cards with GT200 and
GF100 architectures. Secondly, since the register usage and the complexity of the code executed by each
thread is higher in this implementation, the CUDA compiler has to store some data into local memory,
which also increases the execution time.

Recently, a new simpler numerical scheme for the two-layer shallow water system has been proposed
[31]. This scheme can be fully implemented in single precision and therefore, the execution times and
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(a) t=0 (b) t=15 s

(c) t=30 s

Figure 12. Evolution of the free surface and interface (two-layer fluid)

CPU CPU GTX 260

Mesh size 1 core 4 cores CUSDP CUDP

4016 6.86 1.76 2.33 2.29

16040 56.74 14.57 14.46 13.83

64052 496.2 137.1 108.7 106.0

256576 5606.4 1764.5 795.7 887.5

1001898 54154.7 16906.4 5613.9 8209.5

Table 4
Execution times in seconds for all the meshes and programs for the two-layer case.

speedups are notably improved with respect to those presented in this section. Furthermore, the results
obtained with this new scheme have similar quality to those obtained with the Roe scheme.

We have also compared the numerical solutions obtained in the monocore and the CUDA programs.
The L1 norm of the difference between the solutions obtained in CPU and GPU at time t = 1.0 for all
meshes was calculated. The order of magnitude of the L1 norm using CUSDP varies between 10−3 and
10−5, while that of obtained using CUDP varies between 10−13 and 10−14, which reflects the different
accuracy of the numerical solutions computed on the GPU using both single and double precision, and
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Figure 13. Speedups obtained in the CUDA and OpenMP implementations in all meshes for the two-layer case.

using only double precision.

8. Conclusions

Different implementations of a path-conservative first and third-order Roe type well-balanced finite
volume scheme for the one-layer shallow water system have been performed. Optimization techniques to
parallelize efficiently the numerical schemes on CUDA architecture have been considered. Simulations of
the one-layer shallow water system carried out on a GeForce GTX 280 and GTX 480 cards using single
precision were found to be up to two orders of magnitude faster than a monocore version of the solver
for big size uniform problems, one order of magnitude faster than a quadcore implementation based on
OpenMP, and also faster than a GPU version based on a graphics-specific language (Cg). The double
precision version of the CUDA solver has been 7 times slower than the single precision version for big
meshes. In any case, this factor of 7 can be dramatically reduced using a Tesla graphics card based on
Fermi architecture, where the number of double precision units is increased. These simulations also show
that the numerical solutions obtained with the solver are accurate enough for practical applications,
obtaining better accuracy using double precision than using single precision. In the case of two-layer
shallow water system the results are not so good and speed up are dramatically reduced, mainly for the
use of double precision in the main cores of the algorithm. Nevertheless, in [31] a new scheme for the
two-layer shallow water system has been introduced, such as no spectral decomposition of the matrices
Aij are needed, and only some information of the eigenvalues of the system must be provided. The
implementation of this scheme is being carried out and the first results are promising: simulations can
be performed on single precision and therefore, the speedup is increased, being the quality of the results
similar to those obtained with the usual Roe scheme. As further work, we propose to extend the strategy
to enable efficient high-order simulations on non-structured meshes.
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[1] M. J. Castro, J. A. Garćıa-Rodŕıguez, J. M. González-Vida, C. Parés, A parallel 2D finite volume scheme for solving
systems of balance laws with nonconservative products: Application to shallow flows, Comput. Meth. Appl. Mech. Eng.
195, 2788–2815, 2006.
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