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Abstract. A COmponent-based Methodology to derive Parallel pro-
grams to solve Ordinary Differential Equation (ODE) Solvers, termed
COMPODES, is presented. The approach is useful to obtain distributed
implementations of numerical algorithms which can be specified by com-
bining linear algebra operations. The main contribution of the approach
is the possibility of managing several implementations of the operations
and exploiting the problem structure in an elegant and systematic way.
As a result, software reusability is enhanced and a clear structuring of
the derivation process is achieved. The approach includes a technique to
take the lowest level decisions systematically and is illustrated by deri-
ving several implementations of a numerical scheme to solve stiff ODEs.

1 Introduction

One important formulation for the ODEs arising from the modelling process is
that of the Initial Value Problem (IVP) for ODE [3]. The goal in the IVP is to
find a function y : IR — IR? at an interval [to, ty] given its value at tg, y(to) = yo,
and a system function f : IR x R? — R? fulfilling that y' (t) = f(¢,y).

The computational demands of the numerical methods to solve IVPs, and
the complexity of the IVPs which arise in practical applications, suggests the
use of efficient algorithms for Distributed-Memory Parallel Machines (DMPMs).

In order to achieve an acceptable performance on a DMPM, the parallel
design of this kind of numerical software must take into account 1) the task and
data parallelism exhibited by the method (usually, several subcomputations in
a time step can be executed simultaneously and each one is composed of linear
algebra operations) 2) the characteristics of the particular DMPM and 3) the
particular structure of the IVP whose exploitation is fundamental.

Currently, the development of parallel software for these applications benefits
from two contributions:

e The development of reusable software components of parallel linear algebra
libraries [2] for DMPMs, which encapsulate the details about the efficient SPMD
implementation of many standard solution methods.



2 J. M. Mantas et al.

e The hierarchical execution systems to exploit the mixed parallelism [7, 8] fa-
cilitate the generation of group SPMD programs in which several SPMD sub-
programs are executed by disjoint processor groups in parallel. This execution
model is specially suitable to exploit the potential task and data parallelism of
these applications and the MPI standard makes it possible its implementation
on DMPMs. The TwoL framework [8] for the derivation of parallel programs
and the PARADIGM compiler system [7] are relevant contributions in this area.
However, these approaches may benefit from explicit constructs to: a) maintain
and select among multiple implementations of an operation in an elegant and
systematic way (called performance polymorphism in [5,4]), and b) exploit the
particular structure of the IVPs.

We propose a methodological approach based on linear algebra components
for deriving group SPMD programs to solve ODEs. This approach, termed
COMPODES, includes explicit constructs for performance polymorphism, takes
into account the exploitation of the problem structure and enables the structur-
ing of the derivation process by including three clearly defined phases in which
optimizations of different types can be carried out. The proposal is illustrated by
deriving parallel implementations, adapted to two different IVPs, of an advanced
numerical scheme [9,4] to solve stiff ODEs.

A brief introduction to COMPODES is presented in section 2. The three
following sections illustrate the COMPODES phases and introduce a technique
to complete the last phase. Some conclusions are drawn in section 6.

2 COMPODES Overview

In COMPODES, the description of the functional behaviour of a linear algebra
operation is decoupled from the multiple implementations which provide the
same functionality. This is achieved by encapsulating each entity as separate
software components [5,4]: concepts (formal definitions of operations) and reali-
zations (particular implementations). Each concept can have several associated
realizations. This explicit distinction allows us to select the implementation that
offers the best performance in a particular context (target machine, IVP, etc.).
A concept (MJacobian) that denotes the computation of an approximation
to the Jacobian of a function f at a point (¢,y) € IR*! is presented in Figure
1. Two different realizations for MJacobian are shown: Seq_M Jacobian encap-
sulates a sequential implementation of the operation and the parallel realization
Block_M Jacobian obtains a block column distribution of the Jacobian matrix.
A realization has a client-visible part, called the header, which describes the
aspects that must be known to use the code (called the body) including: a) the
distribution of the array arguments among the processors [4], b) a formula which
estimates its runtime from parameters describing the data distributions, the tar-
get machine (number of processors P, per word communication cost %,,, startup
time t4, etc.), and problem size, and c) the storage scheme of the arguments.
We have defined a specialization mechanism to adapt a concept to deal with
the particular structure of its arguments. When a concept has not been obtained
by the specialization of a previously existing one, we say that it is a general
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Fig. 1. The MJacobian concept with several realizations and specializations

concept. A specialized concept might admit more efficient implementations than
a general one because the implementation can take advantage of the special
structure of its arguments. We can consider two types of specialization:

e Specializations based on the array structure [5]. For instance, we can specialize
a concept which denotes the usual matrix-vector product operation (MVproduct)
to deal with banded matrices (BandedMVproduct).

e Specializations based on the function structure. In Figure 1, several specia-
lizations of the MJacobian concept based on the function structure are shown.
BandedMJacobian specializes MJacobian to deal with a banded system function
with bandwith Lw + Up + 1. A system function f is banded when a compo-
nent of the output vector f(¢,y) only depends on a consecutive band of the
input vector y. This kind of function enables the minimization of the remote
communication when the function is evaluated on several processors. The Jaco-
bian matrix generated with Banded MJacobian must also be banded. The con-
cept SplitMJacobian indicates that the argument f is cost-separable. A system
function is cost-separable when it is possible to define a partitioning function fb
which allows the evaluation of f homogeneously by pieces without introducing
redundant computation. This property is important to enable the easy exploita-
tion of the data parallelism in the block parallel evaluation of f.

The derivation process in COMPODES starts from a mathematical descrip-
tion of the numerical method to solve ODEs and proceeds through several phases.
During the first phase, called functional composition, several general concepts
are selected and combined by using constructors of sequential and concurrent
composition to describe the functionality of the method and the maximum de-
gree of task parallelism. As a result, a version of general functional specification
is obtained (see Figure 2b). From this representation, one can obtain a sequential
program automatically (by using the sequential realizations linked to the general
concepts which appear in the specification), which makes it possible to validate
the numerical properties of the method. If the validation detects neither anoma-
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Fig. 2. a) Overview of COMPODES, b) Funtional Composition

lies nor improvement possibilities, we obtain a definitive version of the general
specification which can be used in the solution in different contexts of different
IVPs on different architectures.

During the specialization phase, the general specification is modified accor-
ding to the structural characteristics of the particular IVP to be solved. These
modifications consist fundamentally of replacing general concepts by specializa-
tions. The user must provide a sequential routine to evaluate the system function
and a sequential prototype can also be generated to validate the specification.
As aresult, a specialized specification is obtained which allows the exploitation of
the special structure of the problem because realizations adapted to the structure
of the arrays and functions can be selected in the next phase.

Finally, the instantiation phase [4] takes into account both the parameters
of the IVP and of the target machine in order to: 1) schedule the tasks and
allocate processors to each task, 2) select the best realization for each concept
reference of the specification and the most suitable data distribution parameters
for each realization chosen and 3) insert the required data redistribution routines.
The goal is to obtain a good global runtime solution. This last phase can be
performed systematically to obtain a description called parallel frame program
which can be translated into a Fortran program augmented with MPI routines.

3 Functional Composition

To illustrate this phase, we employ an advanced numerical method to solve stiff
ODE:s [9], which is a parallelization across the Radau ITA method with 4 stages
[3]. The analysis of this numerical scheme [4], makes it possible to derive an
improvement of this scheme (called ONPILSRK) which presents a lower com-
putational cost and exhibits greater task parallelism. We have selected several
general concepts to specify this method. For instance, LUdecomp(.., 4, ..) denotes
the LU Factorization of A, SolveSystem(.., 4, ..., X) denotes the computation of
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Fig. 3. a) General specification of the ONPILSRK method, b) Layered specialized
specification ONPILSRK-VORTEX, c) Parallel frame program

X +— A7!'X (assuming LUdecomp(.., 4, ..)) and the Feval(..,t, f,y, dy) concept
denotes the evaluation of the function f. These operations are the main sources
of data parallelism exhibited by the method. To combine these concepts, we can
use a graphical notation which expresses the concurrent and sequential composi-
tion as a task directed graph. A summarized description of the definitive general
specification of the scheme is presented in Figure 3a, where the edges denote
data dependencies between operations and in which the main sources of task
parallelism in the method are represented with concurrent loops (PAR i = 1,4).

4 Specialization

To illustrate this phase, we adapt the ONPILSRK method to two stiff IVPs:

e An IVP, noted as VORTEX, which models the evolution of two singular vortex
patches governed by a two-dimensional incompressible fluid flow [1]. Assuming
each vortex patch boundary has been parameterized by using N/2 points, we
obtain a system with 2N ODEs where the evaluation of the equations of a point
depends on all the other points (it involves a dense Jacobian) and the system
function is cost-separable. The specialization of the functional specification for
this problem consists of incorporating the cost-separable property of the system
function f. This includes 1) defining a partitioning function fb as a sequential
routine, and 2) substituting the general Feval and MJacobian concepts by spe-
cialized concepts which manage cost-separable functions as shown in Figure 3b.
This enables the exploitation of the data parallelism existing in the evaluation
of f by selecting specialized parallel implementations in the instantiation phase.
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e An ODE system, noted as BRELAX, which describes a 1D rarefied gas shock
[6]. The resulting system has 5N ODEs when the 1D space is discretized by
using N grid points. The system function is also cost-separable and has a narrow
banded structure with lower bandwith Lw = 9 and upper bandwidth Up = 7.
To obtain the specialized specification for this IVP, several general concepts,
which deal with matrices maintaining the banded structure of the Jacobian (for
instance, LUdecomp) must be replaced by specializations which assume a banded
structure for these matrices. The concepts MJacobian and Feval must be re-
placed by specializations which assume a cost-separable banded system function.

5 An approximation method to perform the instantiation

We propose an approximation method to perform the last phase, which assumes
that these algorithms exhibit a task parallelism with a layered structure [8]. The
method selects the most suitable realizations and data distributions in an ordered
way, by giving priority to the most costly layers in the layered specification.

Following this method, we have obtained parallel implementations of the
ONPILSRK scheme adapted to the VORTEX and BRELAX IVPs for the P = 4
and P = 8 nodes of a PC cluster with a switched fast Ethernet network. To illus-
trate the method, the instantiation of the ONPILSRK-VORTEX specification
for P = 8 will be considered. Figure 3¢ presents a graphical description of the
parallel frame program obtained. The nodes can represent a realization call or
parallel loops applied on a sequence of calls. Every call is assigned to a processor
group and some edges are labelled with redistribution operations [4].

The method uses the task layer definition which is introduced in [8] to identify
layers in the graph. The layers are ordered taking into account the estimated
execution time of the sequential realizations linked to the nodes of each layer,
and then the layers are instantiated in an ordered way starting with the most
costly ones. Figure 3b shows how the layers have been ordered in our example.

The instantiation of a layer depends on its internal structure and is based
on the constrained instantiation of a concept reference. Given a layered func-
tional graph, where several nodes may have been instantiated, and a reference
to a concept C' which belongs to a layer, the constrained instantiation of C' on
P, processors, consists of selecting (R, Pr, D), where R represents a realiza-
tion linked to C, Pr < P, denotes a number of processors and D is a set of
parameters describing the distribution of the array arguments of R on Pr pro-
cessors. This selection is performed such that the estimated execution time for
the operation C' is minimized taking into account the cost associated with the
redistribution operations needed to adapt the data distributions of R (given by
D) with the distributions followed in previously instantiated nodes. The con-
strained instantiation also involves inserting redistribution operations to adapt
the data distributions.

When a layer encapsulates a chain of concept references, it is a linear layer.
To instantiate a linear layer, its nodes are sorted according to the estimated
sequential time and the constrained instantiation of each reference concept on
the total number of processors is carried out starting with the most costly nodes



in the chain. In our example, the instantiation starts with the linear layer 1 (see
Figure 3b) (the most costly one) which only contains one operation. Since there
is no fixed data distribution which affects this layer, the optimal realization for
the group with the 8 processors (G1) is chosen. This realization generates a block
column distribution of the Jn matrix (distribution type MG1).

When a layer includes several concurrent chains, it is a concurrent layer.
To instantiate a concurrent layer, all the possibilities of scheduling the chains are
evaluated. To evaluate a scheduling choice where there are concurrent chains,
the total number of processors is divided among the resultant concurrent chains,
in proportion to the estimated sequential time of each chain. Next, every chain
is instantiated as in a linear layer but on the previously assigned number of
processors. The result of instantiating each chain is evaluated by combining the
runtime formulas of the realizations selected and the redistribution costs. Finally,
the choice which minimizes the estimated runtime for the layer is chosen.

In our example, layer 2 is a concurrent layer with 5 chains. The scheduling
choice which gives the lowest cost consists of assigning each chain of the concu-
rrent loop to disjointed groups with 2 processors (G4(i), i = 1,...,4) and then
executing the other one on the G1 group. This involves the use of a ScaLAPACK
realization (LU factorization) [2], which assumes a 64 x 64 block-cyclic distribu-
tion of the matrix (MG4(i), i = 1,...,4). Therefore the selection of this choice
must take into consideration the redistribution of the matrix Jn. To instanti-
ate layer 3, a realization to perform a parallel block evaluation of the function
system which uses the partitioning function is chosen. The remaining layers are
instantiated in an ordered way but taking into account the fixed distributions.

We have compared the runtime of the parallel programs obtained with two
sequential solvers: RADAUS [3], an efficient stiff ODE solver, and the sequential
implementation of the ONPILSRK scheme, called here SNPILSRK (see Figure
5). The implementations for the VORTEX IVP achieve a speedup of 3 to 3.7
on 4 processors and a speedup of 6.5 to 7.5 on 8 processors with regard to
SNPILSRK. The implementations for BRELAX achieve a speedup of 3.65 to 4
on 4 processors and a speedup of 7.15 to 7.85 on 8 processors with regard to
SNPILSRK. The results obtained with regard to RADAUS5 are slightly better.

6 Conclusions

The COMPODES approach to deriving parallel ODE solvers is proposed. The
approach makes it possible to manage several implementations of the operations
and enables the separate treatment of different aspects during the derivation:
a) Functional aspects: A generic description of the functionality and the task
parallelism of the method is obtained in the initial phase by focusing on opti-
mizations independent of the machine and the problem.

b) Problem structure: In the specialization phase, all the structural characteris-
tics of the problem are integrated into the method description in order to enable
its exploitation in the next phase.

c) Performance aspects dependent on both the architecture and the problem: A
simple approximation method has been proposed to take systematically all the
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parallel design decisions which affect the performance of the final program by
considering both the parameters of the problem and the machine.

The approach is illustrated by deriving several efficient implementations of

a stiff ODE solver for a PC cluster. Following this approach, satisfactory results
have been obtained in the solution of two different problems.

Acknowledgements
This work was supported by the projects TIC2000-1348 and BFM2002-01710 of the

Ministerio de Ciencia y Tecnologfa.

References

1.

2.

Carrillo, J. A., and Soler, J.: On the Evolution of an angle in a Vortex Patch. The
Journal of Nonlinear Science, 10:23-47, 2000.

Dongarra, J., Walker D.: Software libraries for linear Algebra Computations on High
Performance Computers. STAM Review, 37(2):151-180, Jun. 1995.

Hairer, E., Wanner., G.: Solving Ordinary Differential Equations II: Stiff and Dif-
ferential Algebraic Problems. Springer-Verlag, 1996.

Mantas, J. M., Ortega, J., Carrillo J. A.: Component-Based Derivation of a Stiff
ODE Solver implemented on a PC Cluster. International Journal of Parallel Pro-
gramming, 30(2), Apr. (2002).

Mantas, J. M., Ortega, J., Carrillo J. A.: Exploiting the Multilevel Parallelism and
the Problem Structure in the Numerical Solution of Stiff ODEs. 10th Euromicro
Workshop on Parallel, Distributed and Network-based Processing, (2002).

Mantas, J. M., Ortega, J., Pareschi, L., Carrillo J. A.: Parallel Integration of Hy-
drodynamical Approximations of the Boltzmann Equation for rarefied gases on a
Cluster of Computers. Journal of Computational Methods in Science and Engineer-
ing, JCMSE, 3(3):337-346, 2003.

Ramaswamy, S., Sapatnekar, S., Banerjee, P.: A Framework for Exploiting Data
and Functional Parallelism on Distributed Memory Multicomputers. IEEE Trans.
Parallel and Distributed Systems, 8:1098-1116, Nov. 1997.

Rauber, T., Riinger, G.: Compiler support for task scheduling in hierarchical exe-
cution models. Journal of Systems Architecture, 45:483-503, 1998.

Van der Houwen, P. J., de Swart, J. J. B.: Parallel linear system solvers for Runge-
Kutta methods. Advances in Computational Mathematics, 7:157-181, Jan. 1997.



