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Abstract

The relaxed Burnett system, recently introduced in [5] as hydrodynamical approximation
of the Boltzmann equation, is numerically solved. Due to the stiffness of this system and the
severe CFL condition for large Mach numbers, a fully implicit Runge-Kutta method has been
used. In order to reduce computing time, we apply a parallel stiff ODE solver based on 4-stage
Radau ITA TRK. The ODE solver is combined with suitable first order upwind and second order
MUSCL relaxation schemes for the spatial derivatives. Speedup results and comparisons to
DSMC and Navier-Stokes approximations are reported for a 1D shock profile.

Keywords: Parallel Numerical Algorithms, Boltzmann equation, Burnett equations, Pa-
rallel Stiff ODE solvers, relaxation, Implicit Runge-Kutta methods.
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Figure Captions

Figure 1: Speedup results with P =4 and P = 8.

Figure 2: Numerical Solution of Navier-Stokes (NS) and Relaxed-Burnett (RB) equations
for Mach Number 4 at time t=100.

Figure 3: Numerical Solution of Navier-Stokes (NS) and Relaxed-Burnett (RB) equations
for Mach Number 10 at time t=100.



1 Introduction

The Boltzmann equation represents a model for rarefied gas dynamics of monatomic gases or
mixtures [1]. Due to the large number of dimensions of the Boltzmann equation (evolution
equation in 6 dimensions for a simple monoatomic gas), one has to resort to alternative nume-
rical methods to obtain an approximation to its solution. In real applications, two methods
are mainly used: DSMC (Direct Simulation Monte-Carlo) and moment methods. Although
DSMC offers less computational cost and greater versatility, it yields low accuracy and sta-
tistically fluctuating results, slow convergence and transients are poorly resolved. Since the
deterministic solution of the Boltzmann equation is a challenging problem, not only because of
the high dimensionality of the equation but also because of the conservation properties of the
collision operator, one usually reduces the problem by studying the evolution of certain mo-
ments of the density function. Moment methods consist of taking averages of the Boltzmann
equation over the velocity variable and make, by some assumption or expansion procedure, a
closure to relate higher order moments to low order moments.

Here, we focus on a moment system introduced recently by S. Jin and M. Slemrod [5],
called the relaxed Burnett (RB) system. In [4], a numerical scheme for this system based on a
semi-implicit discretization of the equation combined with central schemes on staggered grids
has been proposed. This scheme gives rather good results in 1D for various Mach numbers in
the range [1, 10]. However it is observed that for large Mach numbers a severe CFL condition
is required. As a consequence, the use of explicit methods to perform the time integration of
this system is impractical.

The stiffness and the particular structure of the relaxed Burnett system, demands a great
deal of computing power. Here we have modified the spatial discretization of the relaxed
Burnett system in 1D, in order to apply a general purpose time integration solver for the stiff
ODE’s system. Following a component-based methodology to derive parallel ODE solvers, a
distributed implementation of a powerful parallel numerical method based on a Radau ITA
implicit Runge-Kutta method (IRK) has been obtained. This parallel program is applied
to the stiff ODE system resulting as discretization of the RB system (method of lines) and
computed on a cluster of PC’s.

The parallel stiff ODE solver has been used to solve a test problem of a 1D shock profile.
Comparisons with respect to the Navier-Stokes system (NS) and speedup results of the parallel
stiff ODE solver with respect to the RADAUS5 stiff ODE solver [3] are provided for various

Mach numbers and meshes. Our parallel solver is shown to be particularly suited to solve this



problem, since it keeps similar time and spatial accuracy as sequential methods [4] and the

computing time is considerably reduced (see Figure 1).

2 The 1D Relaxed Burnett System

The relaxed Burnett system for 1D [5, 4] can be written in the following form:
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In this system, we have five independent variables p (mass density), m = pu (momentum,
where u is the macroscopic velocity), z = %qu + %p (total energy, where p is the normal
pressure), o (pressure deviation tensor) and ¢ (heat flux vector). Here 6 is the temperature,
p is the viscosity (1 = p(f)), M is the Maxwell number (M ~ 2) and R is the perfect gas
constant.

The symbols w1, ...,ws, O1,...,05, Wa ..., 04, 92, .. .94, 1 and X1 denote coefficients of the

relaxed Burnett system. The approximated values for these constants are given by [4]

10
wlzga WQ:2, UJ3:3, W4:O, UJ5:3, w6:87
225 45 117 A —45
= — = — = — = = — V- = = — 2
01 TR 6> 3 03 3, 04=3, 05 1 71=0, M 16 (2)
Qo=@ =4 =20, 6y=—60, 63=100, 6, =25.
The values of the parameters &; and éi, i = 1,...,4 have been computed by a least square

fitting with DSMC results for Mach 4 [4].

3 Spatial Discretization

We have obtained a stiff ODE system from the spatial discretization of the RB system for 1D.
The infinite physical space is truncated to the finite region [0, L] where L depends on the Mach
number considered. We have subdivided this interval into N —1 intervals of length Az = ﬁ

To obtain the spatial discretization of F(U,V),, we have applied the relaxation approxi-
mation presented in [6]. Precisely, we have studied the application of two relaxation schemes
in the zero relaxation limit [6]. First we have splitted F(U, V), = FY(U), + F*(U,V),. In the

sequel we noted F = F* for simplicity.

e First-order upwind relaxation scheme

An approximation of Uy + F(U), = 0, gives:
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Here, U;, j =1,..., N, is the approximation to the vector U at the j-th grid point. The
matrix A is a diagonal matrix of positive values a;, i = 1,...,3 which are selected in

order to ensure the dissipative nature of the system [6].

e Second-order MUSCL relaxation scheme

In this case, the spatial discretization is a perturbation of the first order upwind, namely:

0
Ui = [F(U).]
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P +
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Here, s]i is the slope of F(U;) £ AY2U; [6].

These are consistent and stable discretizations of F(U),. The splitting of F(U, V) into F(U)+
F2(U,V) allows us to use the same relaxation matrix A as for the Euler system [6].

We have discretized the spatial derivatives in F*(U, V)., G(U,V,U,,V,) and D(U,V, Uy, V)«
in the RB equations for the stress deviator and heat flux (which are not in conservative
form), by using second-order central finite differences. This spatial discretization on the grid
(z1,22,...,2N) leads to a system of 5N differential equations. These equations have been

ordered according to
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With this ordering, the ODE system has a banded structure with 9 subdiagonals and 7 su-
perdiagonals. This structure will have to be taken into account in order to perform efficiently

the time integration.

4 A Parallel Stiff ODE solver to Perform the Time Inte-
gration

The ODE system which arises from the spatial discretization of the relaxed Burnett system
contains stiff terms because it has been obtained by applying a relaxation scheme [6] and a
severe CFL condition is required for large Mach numbers. Therefore, an implicit method must
be used to perform the time integration. Since the resulting system is nonlinear, solving the
time discretization is highly expansive and it may benefit from the use of parallel processing.

We start from an efficient and powerful parallel numerical scheme to solve stiff ODEs

[10, 7]. This scheme is based on a Radau ITA implicit Runge-Kutta method with 4 stages [3]



and exhibits excellent convergence and stability properties. The parallel numerical scheme is
a mixture of direct and iterative algorithms to solve the nonlinear systems which arise when
the Radau ITA method [3] with 4 stages is applied. As a result, the computation of each stage
of the method can be performed in parallel. Additionally, this method has been optimized
in [8] by reducing computation costs and increasing the task parallelism. In order to select
dynamically the stepsize through the time integration, the scheme uses a strategy which is
very similar to that used in the RADAUS5 solver [3].

An efficient implementation of this numerical scheme for a cluster of Personal Computers
has been developed. For that, we have applied a component-based methodology to derive
parallel ODE solvers [9, 8]. This methodology allows the exploitation of the task and data
parallelism of the numerical scheme and the structure of the problem to be solved, in order to
minimize the execution time.

Following this methodology, the parallel numerical scheme has been efficiently implemented
on a cluster of PCs based on Pentium II. We have obtained two versions of this solver, one
optimized for 4 processors and another optimized for 8 processors.

The implementation uses the parallel routines of LAPACK and ScaLAPACK libraries [2]
to take advantage of the potential parallelism of the scheme and the banded structure of
the ODE system. The parallelism inherent in the ODE system and the structure is also
exploited by using a parallel block routine for the evaluation of the ODE system. The remote
communication which is required to obtain local portions of the subvectors in each processor
is reduced substantially taking into account the banded structure of the ODE system. This
structure is also taken into account to reduce the cost in the computation of the Jacobian
matrix. The structure of the system is also used at each stage and step of the iterative method

by particular library routines for banded matrices.

5 Experimental Results

The relaxation model has been considered in the form (1) with 4 = €6 (e is the Knudsen
number), R = 1 and the set of parameters given by (2).

The test problem is given by a one-dimensional stationary shock profile for ¢ = 1 and
different values of the Mach number ranging from 1.4 to 10. In all our numerical examples the
gas is initially at the upstream equilibrium state in the left half-space and in the downstream
equilibrium state in the right-half space. The two states being smoothly connected with an

hyperbolic tangent function. We compare our results to the reference solution given by the



DSMC method.

The parallel code is applied to solve the test problem. We report the result obtained with
the Navier-Stokes equations and the Burnett relaxed system, using several space cell numbers
at time ¢t = 100 after the stationary state has been reached. The NS system is obtained as a
particular case of our RB system by taking the o and ¢ variables to the following values:

4

3
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We omit the results obtained with Mach number 1.4 because the results obtained by inte-
grating NS and RB equations are very similar and they provide a reasonable good description
of the rarefied shock.

The results with Mach number 4, ¢t = 100, and 800 grid points is shown in figure 2. In this
figure, the solutions obtained by integrating the NS and RB equations, for the density p(z, ),
the velocity u(z,t), the temperature 6(x,t), o(x,t)) and q(z,t), are compared to the reference
solution given by the DSMC method.

We also compare the results obtained by the upwind relaxed scheme with a fine grid
(N = 800 points), with the results obtained by the MUSCL relaxed scheme with a coarse grid
(N = 200 points). The numerical experiments show that the results are very similar in both
cases (upwind with 800 points and MUSCL with 200 points) and a marked improvement of
the numerical solution with respect to NS model is achieved in both cases. Despite of the
advantage of using less grid points, the use of the MUSCL scheme in the spatial discretization
requires very small stepsize (330 time steps for the upwind scheme and more than 4000 steps
for the MUSCL to achieve the same final time) and the computational cost of each integration
step is greater. The use of MUSCL instead of the upwind scheme might only be justified if one
is interested in computing discontinuous shock profiles or when there are strong constrainsts
in the storage available for the computational system.

With Mach Number M = 10.0 (see figure 3), we only show the results of the RB model
when the upwind scheme is used in the spatial discretization because of previous reasons.
The numerical results obtained for the RB model represent a marked improvement with re-
spect to the NS model. Finally, we want to remark that the computation for larger Mach
numbers (> 10) with this approach has not been possible yet. The main difficulty is to find
stable approximations of the nonconservative system (1). These issues are currently under
investigation.

In order to show the benefits of performing the time integration in parallel, we have calcu-

lated the speedups of our parallel solver by considering two sequential stiff ODE solvers:



Figure 1:

Speedup with P=4 and P=8 processors
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e one of the most robust and efficient sequential stiff ODE solvers, the experimental code

RADAUS [3], based on a Radau ITA method with 3 stages (order 5),

e a sequential implementation of the optimized Newton-PILSRK (Parallel Iterative Linear

System Solver for Runge-Kutta) method that we called SNPILSRK [10, 8].

Both sequential solvers take advantage of the banded structure of the ODE system.

We report the parallel speedup results obtained on 4 and 8 processors (see figure 1). These
results have been obtained by comparing the parallel execution times for P = 4 and P = 8
processors, with the execution time of the sequential programs (SNPILSRK and RADAUS5)
running on a single processor of the PC cluster. The time results were taken on an integration
step, starting from the initial state, for Mach Number 10 and meshes varying form N = 80 to
N = 1200.

The experiments reveal that a speedup of 3.2 to 3.85 can be achieved on 4 nodes and a
speedup of 5.2 to 7.9 can be achieved on 8 nodes with regard to the SNPILSRK solver. The
speedup values obtained with respect to RADAUS5 solver are only a slight improvement. Our
SNPILSRK solver is slightly faster than the sequential version of RADAUS5 as seen in Figure
1, where speedups with respect to the parallel solver are slightly higher for RADAUS5 than
those obtained by using SNPILSRK.
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