
Simulation of Shallow Water systems using
GPUs

M. Lastra1 and J. M. Mantas1 and C. Ureña 1 and M. J. Castro2 and J.A

Garćıa-Rodŕıguez 3

Abstract— We address the speedup of the nume-
rical solution of shallow water systems in 2D do-
mains by using modern Graphics Processing Units.
We have considered a first order well-balanced finite
volume numerical scheme for 2D shallow water sys-
tems. The potential data parallelism of this method
has been identified and an efficient implementation of
this scheme to solve one-layer shallow-water systems
has been derived for GPUs. Numerical experiments
which have been performed on several GPUs show the
high efficiency of the GPU solver in comparison with
a highly optimized implementation of a CPU solver.

Keywords— shallow water simulation, General Pur-
pose computation on Graphics Processing Units
(GPGPU), high performance scientific computing.

I. Introduction

OU r goal is to efficiently simulate one layer fluids
that can be modeled by using a shallow water

system, formulated under the form of a conserva-
tion law with source terms. The numerical solution
of these models is useful for several applications re-
lated to geophysical flows: simulation of rivers, chan-
nels, dambreak problems, etc. However, these simu-
lations impose a great demand of computing power
due to the dimensions of the domain (space and
time). As a consequence, extremely efficient high
performance solvers are required to solve and analyze
these problems in reasonable execution times. An in-
teresting numerical scheme to simulate shallow wa-
ter systems and an efficient parallel implementation
of this scheme for a PC cluster has been presented
in [1]. This parallel implementation of the numerical
scheme has been improved by using SSE-optimized
software modules in order to accelerate small matrix
computations at each processing node of the cluster
(see [2]). Although these improvements have made
it possible to obtain results in lower computational
times, the simulations still require too much runtime
despite of using efficiently all the resources of a po-
werful PC cluster.

Currently, a cost effective emerging architecture
exists which is specially indicated to accelerate con-
siderably computationally intensive tasks like the one
considered in this paper. Modern Graphics Pro-
cessing Units (GPUs) are not only used to render

1Depto. de Lenguajes y Sistemas Informáticos, E.T.S. Inge-
nieŕıa Informática y Telecomunicaciones, Univ. de Granada.
18071 Granada. e-mails: mlastral@ugr.es, jmmantas@ugr.es,
curena@ugr.es

2Depto. de Análisis Matemático, Facultad de Cien-
cias, Univ. de Málaga. 29071. Málaga. e-mail:
castro@anamat.cie.uma.es

3Dpto. de Matemáticas, Universidad de A Coruña, Cam-
pus de Elviña s/n, 15071 A Coruña. Spain. e-mail:
jagrodriguez@udc.es

3D graphics but can also be a cost effective way to
speedup the numerical solution of several mathemat-
ical models in science and engineering (see [6], [11]
for a revision of the topic). Modern GPUs offer over
100 processing units optimized for performing mas-
sively floating point operations in parallel [9]. As a
consequence, for several algorithmic structures, these
architectures are able to obtain a substantially higher
performance than a powerful CPU.

In [7], a explicit central-upwind scheme is imple-
mented on a NVIDIA GeForce7800 GTX card to
simulate the one-layer shallow-water system and a
speedup from 15 to 30 is achieved with respect an
implementation on an Intel Xeon processor.

We propose an strategy to design an efficient im-
plementation of the numerical scheme presented in
[1] on GPUs using OpenGL and Cg [4]. For that,
we needed to adapt the calculations and the data
domain of the numerical algorithm to the graphics
processing pipeline. We have developed a utility li-
brary which facilitates the mapping and simplifies
the description of the GPU program as sequential
composition of data parallel modules (herein called
fragment shaders).

In the next section, we describe the structure of
the one-layer shallow-water system. Section III in-
troduces the underlying numerical scheme. In Sec-
tion IV, the data parallelism of the scheme and the
main calculation phases are identified. The design of
the GPU version of the numerical solver is described
in Section V. In Section VI, we show and analyze
the results obtained when the solvers are applied to
several meshes using several GPUs. Finally, in Sec-
tion VII we collect the main conclusions of the work
and present the lines of further work.

II. Mathematical model: One-layer

shallow-water system

The one-layer shallow-system is a system of conser-
vation laws with source terms which models the flow
of a shallow layer of homogeneous fluid that occupies
a bounded subdomain D ⊂ IR2 under the influence
of a gravitational acceleration g. The system has the
following form:

∂h
∂t

+ ∂qx

∂x
+

∂qy

∂y
= 0

∂qx

∂t
+ ∂

∂x

(

q2

x

h
+ g

2
h2

)

+ ∂
∂y

(qxqy

h

)

= gh∂H
∂x

∂qy

∂t
+ ∂

∂x

(qxqy

h

)

+ ∂
∂y

(

q2

y

h
+ g

2
h2

)

= gh∂H
∂y

(1)

where h(x, y, t) ∈ IR denotes the thickness of the wa-
ter layer at point (x, y) at time t, H(x, y) is the depth

function measured from a fixed level of reference and
q(x, y, t) = (qx(x, y, t), qy(x, y, t)) ∈ IR2 is the mass-
flow of the water layer at point (x, y) at time t.

Our problem consists of studying the time evolu-
tion of W (x, y, t) = [h(x, y, t), qx(x, y, t), qy(x, y, t)]T

satisfying the system (1).

III. Numerical scheme

As described in [1], the system (1) is discretized
by means of a finite volume scheme. Domain D is
divided into M finite volumes or discretization cells
which are supposed to be closed polygons. Given
a cell Vi ⊂ IR2, i = 1, . . . , M, with area | Vi |,
Ni ∈ IR2 is the center of Vi, Γij is the common edge
of two neighbor cells Vi and Vj with length | Γij |,
ηij = (ηij,x, ηij,y) is the unit vector which is normal
to the edge Γij and points towards Vj (see Figure 1).

Fig. 1. Finite volumes

The approximations to the cell averages of the
exact solution produced by the numerical scheme
at time tn is denoted by Wn

i = (hn
i , qn

i,x, qn
i,y)T . If

we suppose that Wn
i have been already calculated,

the approximation Wn+1

i is computed using a path-
conservative Roe scheme described in [2], [3], [10], as
follows:

Wn+1

i = Wn
i −

∆tn

| Vi |

∑

j∈ℵi

| Γij | Fn
ij (2)

where ℵi is the set of indexes j such that Vj is a
neighbor of Vi, ∆tn is the n-th time step (∆tn =
tn+1−tn). The term Fn

ij ∈ IR3 is computed as shown
below:

Fn
ij = Pn

ij

[

An
ij(W

n
j − Wn

i) − Sn
ij(Hj − Hi)

]

,

Pn
ij =

1

2
Kn

ij ·
[

I − sgn(Dn
ij)

]

· (Kn
ij)

−1,

where An
ij ∈ IR3×3 and Sn

ij ∈ IR3 depends on Wn
i

and Wn
j , Dn

ij is a diagonal matrix whose coeffi-
cients are the eigenvalues of An

ij and the columns

of Kn
ij ∈ IR3×3 are the associated eigenvectors (see

[1]) to obtain more details about the computation of
these matrices).

The time step ∆tn is computed to satisfy the usual
CFL condition as follows:

∆tn = min
i=1,...,M

{

[

∑

j∈ℵi
| Γij |‖ Dn

ij ‖∞

2γ | Vi |

]−1
}

(3)

being γ, 0 < γ ≤ 1, the CFL parameter..
The previous numerical scheme is exactly well-

balanced for the steady solution corresponding to
water at rest. A high order extension of the previous
numerical scheme has been presented in [3]. An high
order numerical treatment of the wet-dry fronts has
been introduced in [5] which ensures the positivity of
the water depth at the front as well as well-balanced
properties of original first order scheme. Finally, ex-
tensions to purely non-conservative hyperbolic sys-
tems, like the two-layer shallow-water system have
been also performed (see [2], [10]).

IV. Parallelism identification and

numerical algorithm

We have designed a data parallel numerical al-
gorithm from the mathematical description of the
numerical scheme. Figure 2 shows a graphical des-
cription of the parallel numerical algorithm. In this
figure, the main calculation phases have been identi-
fied with circled numbers and the the main sources
of data parallelism have been clearly indicated.

Initially, the finite volume mesh must be construc-
ted from the input data with the appropriate set-
ting of initial and boundary conditions.Then the time
stepping process is repeated until the final simulation
time is reached. At the n + 1-th time step, Equation
2 must be evaluated to update the state of each cell.
There is of course a dependence of the data that gets
computed at the n + 1-time step with respect to the
previous one, but this fact does not impose any re-
striction to parallelize the computations performed
at a time step. In fact, the four main calculation
phases of the evaluation present a lot of parallelism
and must be completed consecutively:

1. Edge-based calculations: Two calculations
must be performed for each edge Γij communicating
two cells Vi and Vj (i, j ∈ 1, . . . , M):

a) Vector Mij =| Γij | Fn
ij ∈ IR3 must be computed

as contribution of each edge to the sum associated to
the corresponding neighbor cells Vi and Vj (see Equa-
tion 2) This contribution must be added to the par-
tial sums associated to each cell (Mi and Mj). The
computation of this contribution can be computed
independently for each edge and it is the most costly
calculation in the numerical algorithm because it in-
cludes several 3× 3 matrix computations (inversion,
matrix-matrix product, matrix-vector product, etc.).
Moreover, since we only need the data corresponding
to the volumes Vi and Vj to compute the contribu-
tion for one particular edge Γij , this computation
presents a high arithmetic intensity and locality.

b) The value ∆tij =| Γij |‖ Dn
ij ‖∞ must be com-

puted and added to the partial sums associated to
each cell (∆ti and ∆tj) as an intermediate step to
compute ∆tn (see Equation 3).

Fig. 2. Main calculation phases in the parallel algorithm

Both calculations for an edge can be computed
simultaneously with respect the calculations associa-
ted to another edges.

2. Computation of the local ∆t for each vo-

lume: For each volume Vi, the value of ∆ti is mod-
ified to compute the local ∆t per volume. In the
same way, the computation for each volume can be
performed in parallel.

3. Computation of ∆tn: The minimum of all
the local ∆t values previously obtained for each vo-
lume must be computed. This phase can also be
parallelized if the minimum is calculated following a
recursive decomposition approach [8].

4. Computation of Wn+1

i : The n+1-th state of
each volume (Wn+1

i) must be approximated from the
n-th state using the data computed at the previous
phases. This phase can also be completed in parallel
(see Figure 2).

We can make the following remarks from the des-
cription of the parallel algorithm: a) the computa-
tion steps required by the problem presented in this
paper can be classified into two groups: the com-
putation associated to edges and the computation
associated to volumes; b) the scheme presents a high
arithmetic intensity and the computation exhibits a

high degree of locality because the computation for
each edge or volume only depends on data from ad-
jacent volumes; c) the scheme exhibits a high degree
of potential data parallelism (see Figure 2) because
the computation at each edge or volume is indepen-
dent with respect to the computation performed or
associated to the rest of edges or volumes.

V. Design and implementation of the GPU

solver

The remarks indicate that this problem seems suit-
able for being implemented on modern graphics pro-
cessing units. These processors offer over 100 proce-
ssing units optimized for performing operations with
4-tuples or 4x4 matrices of floating point numbers
(also with smaller tuples and matrices) and floating
point operations in general. In the numerical scheme
presented, the volume state is represented by a 3-
tuple and all the operations involve operations be-
tween 3-tuples and 3x3 matrices which makes it even
more suited for a GPU based computing platform.
The only drawback of using GPUs is the need to
adapt the computational process to the graphics pro-
cessing pipeline and make some mappings between
the problem domain and this pipeline.

A. Data storage and arrangement in the GPU

In Computer Graphics most of the data is repre-
sented by 3 or 4-tuples to denote points and vectors.
Transformations are usually represented by 3x3 or
4x4 matrices. These matrices are multiplied to ob-
tain the composition of different transformations and
vectors and points are multiplied by these matrices
to apply transformations. Therefore these types of
data storage and operations are highly optimized.

There is another type of data which is commonly
used: textures. A 2D texture allows the storage of
n×m floating point 4-tuples and are mainly used to
store colors representing an image to be applied to a
3D object. In order to map 3D points and their co-
rresponding texture position, texture coordinates are
assigned to 3D objects. 3D textures are also available
but they are not required in this context.

The aforementioned mechanisms allow the storage
and representation of the data required by the nume-
rical solver. In fact, the most important data about
volumes and edges must be stored as 2D textures.

A.1 Volume-based information textures

Volumes require the storage of both, the data
which remains constant during the computation, and
the data related to the current and the next state.
The constant data is the following: the depth func-
tion (H), the volume area , the information about
the orientation of the normal vector associated to
each edge and an indication about whether the vo-
lume is a ghost volume or not (fictitious cells which
are only used to impose the boundary conditions).
This data can be packed in a vector of 4 floating
point numbers (float4): one floating point value for
H , one for the area, one for the normal orientation in-

formation and one to indentify a ghost volume. The
penultimate term requires some additional informa-
tion about how the orientation of the normals has
been coded into a floating point value. Basically the
above-mentioned floating point number which repre-
sents the normal vectors orientations will be treated
as an integer value and the orientation of the vectors
is obtained by evaluating the value of its four less sig-
nificant bits. A value of 1 means the normal points
towards the exterior of the volume. The mapping
between bits and edges is shown in Figure 3 a):

Fig. 3. Edges-bits mapping and edge coordinates for a cell

These 3-tuples are stored in a n×m texture where
n×m is at least equal to the number of volumes (see
Figure 4). It is a rectangular matrix where each posi-
tion contains a 3-tuple and is associated to a volume.
On this texture there would still be memory for an
additional floating point value per volume, and thus
float4 data type could be used instead of a float3 one.

The volume state data includes 3 floating point
values. Each Wn

i vector represents the state of vo-
lume i at the n-th time step. This data is stored in
another texture where there would also be a space
for an additional floating point value per volume.

A.2 Edge-based information texture

Regarding edges, the information to be stored is:
the normal vector 2D coordinates, the length and a
value that indicates whether the edge is a bound-
ary edge or not. Again a rectangular texture of 3-
tuples allows the presentation of this information.
The third number will be set to be positive on edges
which are at the frontier of the volume grid.

The edge information textures have the same rows
as the volume information texture, but more columns
because the number of edges is higher. At each
row, for each volume, from left to right, the infor-
mation of the left, top and right edge of each volume
is stored (in this order). This means a row of the
edge texture is a sequence like this one: left edge0,
top edge0, right edge0, left edge1, top edge1, . . . See
figure 4 which shows a 2×2 mesh which also includes
the corresponding ghost cells.

The numbering scheme means that the i-th vo-
lume (the ghost volumes must also numbered), which
will be accessed using its 2D coordinates (u, v)
inside the sizeX × sizeY texture, with (u, v) =
(

i − (sizeX × ⌊ i
sizeX

⌋, ⌊ i
sizeX

⌋
)

will have to access
its edges according to the coordinates which are

graphically shown in Figure 3 b).

Fig. 4. Arrangement and structure in 2D textures for a 2× 2
structured mesh

B. Mapping the computing phases to the GPU

The programable computational steps on a GPU
based system correspond to vertices and fragments
(potential pixels) processing. The processing units
associated to fragments have traditionally been
faster but this is not the case on modern GPUs. The
way to create the computational units associated to
edges and volumes is to either create a vertex or frag-
ment associated to each edge/volume and draw them.
The computational process is performed by assign-
ing the corresponding input data and the processing
code to these elements and drawing them.

We have chosen the traditional approach of draw-
ing a full screen rectangle with a 1 to 1 relation of
fragments and edges or volumes, depending on the
computation stage. This means one fragment per
edge or volume will be drawn and that this will make
the code associated to each edge or volume to be run
by the GPU. By assigning the correct texture coordi-
nates, each fragment will be able to access the data
stored in the before mentioned textures. The tex-
ture coordinates of each fragment will be exactly the
coordinates of the associated volume or edge in the
corresponding textures.

In Figure 5 the computing scheme at each frag-
ment is represented. In this example each frag-
ment performs a computation associated to a vo-
lume. Each fragment(volume) accesses both the data
related to its four corresponding edges and the data
related to the volume itself. All fragments, using the
same code, compute a RGB value in parallel which
in this case is the new state of each volume.

In Figure 6, the computing phases which are per-
formed on the GPU and the communication points
between CPU and GPU are shown. Each GPU
computing phase, except the minimum computation,
must be performed in a data parallel fashion follo-
wing a fragment shader written in Cg [4]. The same
Cg code is applied to each fragment (volume-based
or edge-based) and other textures can be accessed to
obtain input data. These computing phases are:

1. Edge-based calculations: This phase re-

Edge data Volume data

Cg code

Fragments

R = W [0] G = W [1] B = W [2]

Fig. 5. Computing scheme in a volume-based fragment: for
each fragment an instance of the Cg code is run. At each
instance other textures can be accessed to obtain input
data.

quires the use of the Multiple Rendering Target ca-
pabilities of GPUs. This allows to output more than
one 4-tuple (color) at one rendering step and in-
creases the arithmetic intensity of the process be-
cause otherwise, the computation of the aforemen-
tioned results of this step would have to be computed
in three steps which would have an impact on effi-
ciency. As a result of this phase, two volume-based
textures (one 4-tuple per volume) must be generated:
one to store the values Mi for each volume and one
to store the values ∆ti .

2. Computation of the local ∆t for each vo-

lume: For this, a per-volume fragment shader (one
fragment per volume is processed) is invoked.

3. Computation of ∆tn: This is a reduction op-
eration which is more complicated to implement on
GPUs than on other parallel architectures. However
the procedure is based in a recursive decomposition
of the minimum and is described in subsection V-C.

4. Computation of Wn+1

i . As before, a per-
volume fragment shader must also invoked.

5. Update ghost volumes: the state of each of
these volumes is obtained from adjacent volumes to
impose the corresponding boundary conditions.

The CPU runs a driver program which initializes
the GPU textures and must control the finalization
of the time stepping process while the GPU runs the
main calculation phases (see Figure 6).

C. Minimum computation in the GPU

The term uniform stream reduction (or simply
stream reduction, SR in what follows) is used in the
related literature to mean an algorithm or processing
step which computes a single floating point value
from a vector of floating point values. Typical opera-
tions which fall in this category are the computation
of minimum, maximum or sum of the elements of
such a vector, or other associative operations. We
have implemented SR functionality in our system,
as we need to compute the minimum of a stream.

This results in an iterative algorithm which, at
each step, reduces (halves) the size of the array until

Fig. 6. CPU-GPU program structure

the array degenerates in a single 4-float tuple, which
is the resulting value, or from which the resulting
value is easily obtained. This scheme takes advan-
tage of the parallel processing capabilities of these
devices. If we assume that, at one step array size is
m × m (m rows and m columns), with m = 2s > 1,
then this step outputs an array of size 2s−1 × 2s−1.
In such a step, each block of 2 × 2 input array ele-
ments is processed by a fragment processor, resulting
in a single element (with the minimum, maximum or
sum of input block elements) which is stored in the
output array. If the input array size is not a power
of two, then this input array is embedded (by filling
with an adequate value) in a larger one fulfilling this
property. The algorithmic complexity is O(log(n))

Fig. 7. Stream reduction in GPU

VI. Numerical Experiments

In order to test the solvers, we have considered
a problem of an unsteady flow in a 1 m × 10 m
rectangular channel with a depth function H(x, y) =
1 − cos(2πx)/2 and the initial condition is given by

W 0
i (x, y) =

[

h0(x, y), 0, 0
]T

, where:

h0(x, y) =

{

H(x, y) + 2 if x < 5,
H(x, y) other case.

Six uniform meshes of the domain, Qk, k =

0, . . . , 5, are constructed such that the number of vol-
umes of mesh Qk is given by 22k ·103, k = 0, . . . , 5.

The numerical scheme is run in the time interval
[0, 5] except for mesh Q5 which is solved for the time
interval [0, 0.1]. The CFL parameter is γ = 0.9 and
wall boundary conditions are considered (q · η = 0).
Table I shows the execution times for the meshes
considered on several platforms. The CPU imple-
mentation has been optimized to exploit the SSE
CPU units through the use of the Intel Performance
Primitives 4.1 (see [2]) and an Intel C++ compiler
with em64t extension and the choice -O2 has been
used. The CPU executable has been run on an In-
tel Xeon Nocona 2.66 Ghz. The GPU implementa-
tion has been run on three NVIDIA GeForce 8 series
cards: 8800 Ultra, 8800 GTX, and 8400M (laptop)
associated to CPUs of similar performance through
a PCI-express port. The GPU implementation is
based on OpenGL together with several fragment
shaders written in Cg language.

Figure 8 shows the evolution of the speedup ob-
tained when the GPU is used with respect to the
optimized CPU solver when the problem size is in-
creased. The results show that drastic performace
benefits can be obtained by efficiently using GPUs
as a computing platforms. In fact, a speedup greater
than 100 is achieved on both, the NV GF 8800 Ultra
and the NV GF 8800 GTX for meshes of practical
interest, and even a video card embedded in a lap-
top, the NV GF 8400GM (about 50$), allows us to
obtain a speedup greater than 4. To obtain speedups
similar to that obtained with NV GF 8800 cards on a
conventional multiprocessor platform, we would need
a high number of processors and, as a consequence,
a much higher investment would be required.

TABLA I

Execution times for several meshes and GPUs

Qk × tend CPU 8800U 8800G 8400M

Q0 × 5.0 1.05 0.53 0.41 2.25

Q1 × 5.0 8.09 1.11 0.82 6.4

Q2 × 5.0 64.23 2.6 1.95 24.7

Q3 × 5.0 510.6 8.13 6.6 140

Q4 × 5.0 4046 38.96 41.32 998.6

Q5 × 0.1 661 5.3 6.4 152.2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 64000 256000 1.024e+06

Sp
ee

du
p

G
PU

 v
s.

 C
PU

Number of volumes

GF 8800 Ultra
GF 8800 GTX

GF 8400M

Fig. 8. Speedup obtained with respect the CPU code.

Using the considered meshes, we have also per-
formed several numerical experiments to study the
effects of the single precision arithmetic of the GPU
on the numerical solution. These experiments do not
reveal significant differences between the approxima-
tions obtained with a CPU double precision imple-
mentation and those obtained with our GPU solver.

VII. Conclusions and Further Work

An efficient first order well balanced finite vo-
lume solver of one layer shallow water systems which
is able to exploit efficiently the parallel processing
power of graphics processing units has been derived.
Simulations on an NVIDIA GeForce 8800 GPU (less
than 700$) are found to be up to two orders of mag-
nitude faster than the SSE-optimized CPU version
of the solver for medium-size problems.

As a further work, we are approaching several
lines: a) to extend the strategy to enable efficient
simulations on irregular and nonstructured finite vo-
lume meshes and for the simulation of two-layer shal-
low water systems, b) the development of efficient
high order solvers for GPUs [3], and c) to use a clus-
ter of CPU-GPUs to enable the fast simulation of
realistic large domains with very fine meshes.

Acknowledgements

J. Mantas acknowledges partial support from DGI-
MEC project MTM2005-08024. J. Mantas, M. Las-
tra and C. Ureña also acknowledge partial support
from DGI-MEC project TIN2004-07672-c03-02. M.
Castro acknowledges partial support from DGI-MEC
project MTM2006-08075.

References

[1] M.J. Castro, J.A. Garćıa-Rodŕıguez, J.M. González-Vida,
C. Parés, A parallel 2d finite volume scheme for solving
systems of balance laws with nonconservative products:
Application to shallow flows, Comput. Methods Appl.
Mech. Engrg. 195 2788-2815 (2006).

[2] M. J. Castro, J.A. Garćıa-Rodŕıguez, J. M. González, C.
Parés, Solving shallow-water systems in 2D domains using
Finite Volume methods and multimedia SSE instructions,
Journal of Comp. and App. Mathematics, 2007.

[3] M.J. Castro, E.D. Fernández-Nieto. A.M Ferreiro, J.A.
Garćıa-Rodŕıguez, C. Parés. High order extensions of Roe
schemes for two dimensional nonconservative hyperbolic
systems., Submitted to J. Sci. Comp. (2008).

[4] Randima Fernando, Mark J. Kilgard, The Cg Tutorial:
The Definitive Guide to Programmable Real-Time Gra-
phics, Addison-Wesley (2003).

[5] J.M. Gallardo, C. Parés and M. Castro, On a well-balanced
high-order finite volume scheme for shallow water equa-
tions with topography and dry areas, J. Comput. Phys.,
227: 574-601, 2007.

[6] John D. Owens, David Luebke, Naga Govindaraju, Mark
Harris, Jens Krüger, Aaron E. Lefohn, Tim Purcell, A Sur-
vey of General-Purpose Computation on Graphics Hard-
ware, Eurographics 2005 State of the Art Report (2005).

[7] T.R. Hagen, J.M. Hjelmervik, K.-A. Lie, J.R. Natvig,
M. Ofstad Henriksen, Visual simulation of shallow-water
waves, Sim. Modelling Pract. and Th. 13 (2005) 716-726.

[8] V. Kumar,A. Grama, A. Gupta, G. Karypis, Introduction
to Parallel Computing, Benjamin/Cummings (2003).

[9] http://www.nvidia.com,
[10] C. Parés, Numerical methods for nonconservative hy-

perbolic systems. A theoretical framewok., SIAM J. Num.
Anal. 44(1): 300-321 (2006).

[11] Rumpf M., Strzodka R., Graphics Processor Units: New
Prospects for Parallel Computing, L. N. in Computational
Science and Engineering, 51, 89-121 (2006).

