Exploiting the Multilevel Parallelism and the Problem Structurein the
Numerical Solution of Stiff ODEs

J.M. Mantas Ruiz
Software Engineering Dept.
Univ. Granada
Avda. Andalucia 38,
18071 Granada, Spain
jmmantas@ugr.es

Abstract

A component-based methodology to derive parallel stiff
Ordinary Differential Equation (ODE) solvers for multi-
computers is presented. The methodology allows the ex-
ploitation of the multilevel parallelism of this kind of nu-
merical algorithms and the particular structure of ODE
systems by using parallel linear algebra modules. The
approach furthers the reusability of the design specifica-
tions and a clear structuring of the derivation process.
Two types of components are defined to enable the sepa-
rate treatment of different aspects during the derivation of
aparallel stiff ODE solver. The approach has been applied
to the implementation of an advanced numerical stiff ODE
solver on a PC cluster. Following the approach, the para-
[lel numerical scheme has been optimized and adapted to
the solution of two modelling problems which involve stiff
ODE systems with dense and narrow banded structuresres-
pectively. Numerical experiments have been performed to
compare the solver with the state-of-the-art sequential stiff
ODE solver. The results show that the parallel solver per-
forms specially well with dense ODE systems and reasona-
bly well with narrow banded systems.

1. Introduction

One important formulation for the differential equations
arising from the modelling process is that of the Initial
Value Problem (I\VP) for ODE [2]. The goal in the IVP
is to find a function y : IR — R? given its value at an initial
time ¢, and a recipe f : R x R? — IR? for its slope:

y (1) = ft,y), yto)=yo € R, t€lto,ts] (1)

Numerical methods for integrating IVPs generally work in
a step-by-step manner: the interval [to,ts] is divided into
subintervals [to, t1], [t1,t2], ..., [tn—1,tn] (En = tf), and
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approximations ¢y, yo, . . ., yv for the solution at the end of
each interval are computed in a so-called integration step.

Stiff 1VPs [2, 8] are an important class of I\VVPs whose
solution is indispensable for modelling a wide variety of
time-dependent processes in science and engineering [8].
Due to linear stability reasons [8], the efficient numerical
solution of stiff 1\VPs requires the use of implicit methods
[8] of ODE solution. Such methods demand a great deal
of computing power because they require the solution of a
non-linear system of equations at every integration step [2].

The enormous computing power required to solve stiff
IVPs can be achieved by using efficient parallel algorithms
on Distributed-Memory Parallel Machines (DMPMs). The
parallel design of a numerical algorithm to solve stiff I\VPs
must be structured differently to exploit three factors:

e The task and data parallelism exhibited by the nu-
merical method. The numerical methods used to solve
stiff ODEs exhibit two different levels of potential paralle-
lism [11]: 1) task parallelism, owing to the fact that these
methods can be decomposed into several coarse grain cal-
culations which can be executed independently, and 2) data
parallelism, because the most basic calculations of the de-
composition are linear algebra computations which are sus-
ceptible to parallelization following a SPMD style.

e The characteristics of a particular parallel architecture.

e The structure of the problem itself. The Jacobian ma-
trix of the function f which defines the ODE system can ex-
hibit a particular structure (dense, banded, sparse, etc.) and
the exploitation of this structure is fundamental to achieve
an acceptable performance in a stiff ODE solver.

The Group Sngle Program Multiple Data (GSPMD)
[11] programming model is specially suitable to exploit the
potential parallelism of these applications on DMPMs. In
a GSPMD computation, several independent subprograms
are executed by independent groups of processors in para-
llel. A relevant methodological approach for the derivation



of GSPMD programs is presented in [11]. This approach,
termed TwoL, allows the exploitation of the two levels of
parallelism of multiple numerical schemes but may benefit
from explicit constructs to:

e Maintain and select among multiple implementations
of an operation in an elegant way. This characteristic, the
so-called performance polymorphism[9, 10], is very desira-
ble to improve flexibility in performance tuning during the
design of a GSPMD program.

e Deal with different I\VP structures in order to exploit
the particular structure of the matrices and obtain substan-
tial performance improvements.

We propose an extension of the TwoL approach which
has explicit constructs for performance polymorphism and
takes into account the exploitation of the problem structure.
The proposal enables the structuring of the derivation pro-
cess by including three clearly defined methodological steps
in which optimizations of different types can be carried out.

On the basis of our methodological proposal, we perform
optimizations on an advanced numerical scheme to solve
stiff ODEs and derive efficient distributed implementations
of this scheme to deal with dense and banded stiff ODE sys-
tems. The numerical scheme implemented is a paralleliza-
tion of a Radau IA Implicit Runge Kutta method (Radau
1A IRK method) [8] with a lot of multilevel parallelism.

A brief introduction to the methodological proposal is
presented in section 2. The numerical scheme implemented
is described in section 3. The first step of this methodo-
logy is applied in section 4 to derive a generic specification
of the functionality and task parallelism of the method. The
second step is applied to adapt this specification to the struc-
ture of two IVPs in section 5. The parallel design decisions
to derive efficient implementations of the method for a PC
cluster are described in section 6. Section 7 presents the
experimental results and section 8 gives conclusions.

2. A methodological Approach to derive para-
llel stiff ODE Solvers

In order to integrate explicit constructs for performance
polymorphism into TwoL, we need to decouple the descrip-
tion of the functional behaviour of a linear algebra operation
from the multiple implementations which provide the same
functionality. We will encapsulate each entity as separate
components: conceptsand realizations [9, 10].

A concept formally defines the functional behaviour of
a linear algebra operation. A concept that denotes the com-
putation of an approximation to the Jacobian of a function
fatapoint (¢,y) € IR using forward differences is pre-
sented in figure 1. The operation functionality is formally
specified by supplying a precondition (REQUIRES clause)
if necessary and a postcondition (ENSURES clause) [12].

Considering the importance of the problem structure in

CONCEPT MJacobian

CONCEPT MJacobian (IN Integer d, Double £, y(d),
FUNCTION f/ FROM [Integer d, Double t,yo(d)] TO [Double y!(d)], OUT Double Ju(d,d) )
ENSURES for all i,j: {x:Integer where ((x>=1) and (x<=d))}

(Jnji)=... An approximation to 6aﬁ (ty) using forward differences)
yi

REALIZATION Block MJacobian REALIZATION BCyclic MJacobian

HEADER 1 I HEADER
REALIZATION.HEADER Block_MJacobian REALIZATION.HEADER
FOR Mjacobian | 1| BCyclic MJacobian FOR MJacobian

|
|
| DATA.DISTRIBUTION DATA.DISTRIBUTION
Il REP(G)y; BCYCLIC (danint(@P).G)Jn |1 || ~ REP(G)y; BCYCLIC (mn,G)Ju
|| RUNTIME.FORMULAG. 1 G, P tc, .19 || RUNTIME.FORMULA (d.¢{m,n,G,P...)
{RETURN (f+anint(d/P)*(tf+4*d*c) } |

| Ly
BODY BODY |
I || ||SL'BROL'TII\'EB(‘)chciMJncobian(...)
| ] —————

|
|
PARAMETRIC Grid G I I PARAMETRIC Integer m,n, Grid G 1
|
|
|

SUBROUTINE Block_MJacobian (...)

Figure 1. A concept and its realizations

these applications, we define a specialization mechanism to
adapt a concept to deal with the particular structure of the
input array arguments. When a concept has not been ob-
tained by the specialization of a previously existing one, we
say that it is a general concept. Here, a general concept is
considered as a concept which deals with dense matrices. A
general concept can be specialized by restricting the struc-
ture of its array arguments. A specialized concept might
admit more efficient implementations than a general one be-
cause the implementation can take advantage of the special
structure of its matrix arguments. For example, we can spe-
cialize a concept which denotes the matrix-vector product to
deal with banded matrices. An example of hierarchical spe-
cializations starting from a general matrix-vector product
concept is shown in figure 2. In this figure, the parameters
mlA and muA, inthe Banded MVproduct concept, rep-
resent the number of subdiagonals and superdiagonals res-
pectively of a banded matrix A and the REQUIRES clause
is used to impose restrictions on the arguments of the new
concept obtained.

A realization encapsulates the information related to a
particular implementation of a linear algebra operation and
has two parts: the header and the body. The body is the im-
plementation code of the operation which can be obtained
from linear algebra libraries. The header is a client-visible
part which describes all the performance aspects that the
customer programmer needs to know in order to use the
component. These aspects include:

a) The data distributions for input and output array ar-
guments. Given an array A and a logical processor grid
G, to indicate how A is distributed among the processors
of G, we write REP(G) A, if A is replicated among all
the processors of G, and BCYCLIC(m,n,G) A, if A is
block-cyclically mapped on G with m x n blocks [5].

b) A formula which estimates the execution time of the
module from several parameters describing the data distri-



CONCEPT MVproduct
CONCEPT MVproduct (IN Integer m,n, Double a, A(m,n), X(n),b, INOUT Double Y(m) )
ENSURES for all i:Integer where (1<=i and i<=m)
(Y(i) = (sum j:Integer where (1<=j and j<=n) a*A(i])*X(j)/tb*#Y(i) )

CONCEPT Banded MVproduct
CONCEPT Banded MVproduct

CONCEPT Triangular MVproduct
CONCEPT Triangular MVproduct

REDEFINES MVproduct REDEFINES MVproduct
ADD (5) IN Integer mlA,muA ADD (5) IN Character UPLO
REQUIRES REQUIRES (UPLO="U’ or UPLO="L)

for all i,j:Integer where (1<=j and
j<=nand max(1,j-muA)>i and and x<=m)}, j:{x:Integer where
>min(mj+mlA) ) (A(ij)=0) (I<=x and x<=n)}where

(UPLO="U’ and j>i) or (UPLO="L’ and
/ \ ) ((AGj-0)

and for all i: {x:Integer where (/<=x

Figure 2. Specializations from a concept

butions (for example, the block size), the target machine
(number of processors P, per word communication cost ¢ ,,
message startup time ¢, the time taken to execute an arith-
metical operation t., etc.), and problem size parameters.
These formulas are based on a simplified DMPM model and
have been used to predict the runtime of GSPMD programs
in the TwoL framework [11], achieving good accuracy.

Each concept can have several associated realizations.
The explicit distinction between concept and realization as
separate components allows us to select the implementation
that offers the best performance in a particular context. The
choice depends on the target machine characteristics, the
problem and the data distribution scheme of the application.

Two different realizations for the M Jacobian concept
are shown in figure 1. The Block M Jacobian realization
obtains a block column distribution of the Jacobian while
the BCyclic_M Jacobian realization works according to a
more general block-cyclic distribution of the .J,, matrix.

Taking into account the two types of components de-
fined, a methodological approach to derive parallel stiff
ODE solvers is proposed. In our proposal, four steps are
used, as shown in figure 3. The first three steps are the most
important and each one is centred on a different type of opti-
mization. The derivation process starts from a mathematical
description of the numerical method.

2.1. Concept Composition

During this step, all the operations involved in the nu-
merical method must be identified and analysed in order to
reveal all the potential task parallelism of the method. Seve-
ral general concepts must be selected and combined by us-
ing constructors of sequential and concurrent composition
to describe the functionality of the method and the maxi-
mum degree of task parallelism. Several structured com-
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Figure 3. Derivation of Parallel Programs in
the proposed approach

binations of general concepts can be encapsulated as more
complex components, called composed modules. Finally
a general module specification is obtained as a structured
combination of general concepts and composed modules.

Therefore, during this step, optimizations that are inde-
pendent of the architecture and the problem structure can
be tackled because only the functionality of the method to
be implemented has been taken into account. Moreover,
the description obtained is sufficiently generic that it can
be used in the solution of problems with different structural
characteristics on different architectures.

2.2. Specialization

During this step, the general module specification ob-
tained is adapted to the particular structure of the problem to
be solved. Initially, this module specification only contains
references to general concepts. According to the structure
of the problem to be solved, several concepts are substi-
tuted by specializations and if necessary, several important
changes must be made to the module specification. As a
result, a specialized module specification is obtained.

This adaptation allows the exploitation of the special
structure of the problem because realizations adapted to the
structure of the matrices can be used in the next methodolo-
gical step, where all the concepts of the specialized module



specification are substituted by particular realizations.

2.3. Taking Parallel Design Decisions

All the design decisions that affect the performance of
the final implementation must be taken at this step. To do
this, the following information, besides the previously ob-
tained specialized module specification, has to be available:
1) the existing realizations for each concept of the module
specification, and 2) parameters defining the target machine
(P, ty, ts, t., etc.), the problem size (parameters such as
the ODE system dimension, the average computational cost
of the function f, etc.) and the data distribution types for
every array argument of the parallel solver.

The decisions to be taken in this step include an impor-
tant decision called instantiation [9, 10] as well as fixing the
execution order of tasks without data dependencies and the
size of the processor groups used to execute each task [11].
The instantiation involves the selection of the best realiza-
tion for each concept of the module specification and the
most suitable data distribution parameters for each realiza-
tion chosen. The insertion of the required data redistribution
routines must also be performed in the instantiation. All the
decisions must be performed in conjunction to obtain a good
global runtime solution.

The problem that arises in this step is NP-Complete. No
technique is yet available to obtain suboptimal solutions au-
tomatically. We center the instantiation in the more costly
operations by using optimal realizations and data distribu-
tions for these operations, and we pursue an even distribu-
tion of the work among the processors and the minimization
of redistribution costs. Following these guidelines, a satis-
factory performance solutions have been obtained.

3. The Newton-PIL SRK M ethod

The Radau I1A IRK methods [8] are specially suitable to
solve stiff 1\VVPs because they show excellent stability and
convergence properties. An advanced numerical method to
achieve parallelism across a Radau 1A IRK method is des-
cribed in [13]. This method, called Newton-Parallel Itera-
tive Linear System Solver for Runge Kutta methods (abbre-
viated as Newton-PILSRK), is a mixture of iterative and di-
rect algorithms to solve the nonlinear systems which arise
at every integration step, when a Radau 1A method is used.

We have applied the Newton-PILSRK scheme to the
Radau 1A IRK method with 4 stages [8] because it is possi-
ble to obtain an acceptable degree of task parallelism, and
this method exhibits a good convergence order [8]. When
the method is used to solve a d-dimensional IVP-ODE given
by (1), one has the numerical scheme whose pseudocode
description is presented below [13, 10]:

Algorithm

Yo = (30, 40,40, %0)" € R*
foon=1,...,N{ /N=number of integration steps/
X = (ST P @ I)Yae1; W = (ST'E @ I1) Vo1
forj=1,...,m{ /m is determined dynamically/
RMW = h,(ST'A® ) F(Y,U=) 4+ W — Xx,,0=1
(v1) parfor i = 1,4 {D%" = (I, — d;ih, J,) 'R}
R® =RW 4 (Iiy — L ® hy, J,) DUV
(v2) parfor i = 1,4 {D? = (I; — dihnJ,) "R}
XT(L]) — XT(L]'*I) +D(j’1) +D(j’2) }
Vo = Y™y = Vo)
Notation and Definitions

Y = (SeI)XY ,¥n=1,... NVj=1,...,m.
“Yy,i = i-th d-block of Y, = (Yo 1. .., Vn4) € R,
“F(Yn) = (f1, fa, f3, f) L fi = F(tno1 + cihn, Yo i) 7.

- E = (el,el,el,el)” € R el = (0,0,0,1).

-VR e R, R; =ithd-block of R = (RY,...,RT)T.

- I; denotes the identity matrix of dimension d x d.

*hp =t, —tn_1 isthe stepsize.

- Jp, is an approximation to the Jacobian of f in (tn—1, yn—1).
- ®: matrix direct product or Kronecker product [4].

The matrix 4 € R*** and ¢ = (¢;)i=1,..4 € R* are
the main parameters of the Radau 1A IRK method with 4
stages [8]. The matrices L, P € IR*** and the vector d =
(d;)i=1...4 € IR" are constructed in [13] such that: d; > 0,
S is a regular matrix, L is a block-diagonal matrix with two
blocks and P is a matrix defined in [4] to obtain a good
initial approximation to X (0,

We can identify three main sources of task parallelism
in the method: 1) the solution of 4 independent systems of
dimension d in the steps (v1) and (v2), 2) the evaluation of
F(YU=1) is equivalent to 4 independent evaluations of f
and 3) the computation of R, for each value of j, can be
decoupled into two independent computations on different
blocks of L:

parfor i = 1,2 {R\"), = R\) +(Ina— L' ®h. J.) D1} (2)

where L= i-th 2 x 2-block of L and R; 4= i-th 2d-block of
R=(R{,4, R ,;)" € R%.

The method also exhibits a lot of data parallelism, due to
linear algebra operations which can be implemented follo-
wing a data-parallel style.

4. Concept Composition for the method

In this step, the Newton-PILSRK method has been op-
timized. We focus on the computation of k(). If we ex-
pand (2), we obtain: R, = R\, — DY) + Ting, i =
1,2, where Ting = (L' ® haJn)DY%Y. Since DY), =

. A
[D(J) D(J.)] , then we have, fori = 1, 2:

142(i—1)2 2
S Ly s hnn DY)y iy L o dn DY)
i = | : ‘ .

Ly i hnn DY)y iy L ohndn DY)



Table 1. Some general concepts used

Concept Functionality description
MVproduct(m, n, Y+ aAX +0bY, XY € R"
a, A, X,b,Y) a,beR, AeR™™

LU Factorization of A

X +— A7 'X,

assumes LUdecomp(.., A, Ip)
Ax %yi(y,t)

yeR", te R, A€ R"*"

B<+—1I,+aA

A,B € R"*",

LUdecomp(.., A, Ip)
SolveSystem(n, A,

Ip, X)
MJacobian(n, t,y, f, A)

Msumld(n, a, A, B)

a€R

Clearly, in the computation of T 24, the terms JD; =
hnJ,DY, i =1,.. 4, can be computed only once to be
reused in the rest of the computation. As a result, to com-
pute R®®, we can use the scheme presented below with a
lower computational cost and more task parallelism.

parfor i=1,...,4{ JD;=h,J,DY;
2L/ i
2 . .
Z (L(i—l) mod 2411 JDIH(%)) }

=1

In order to describe the functionality of the new version
of the method, we have selected several general concepts.
The functionality of some of these concepts is briefly des-
cribed in Table 1. To combine these concepts, we can use
a graphical notation which expresses the concurrent and se-
quential composition as a directed graph (see figure 4).

In figure 4, the arrows denote data dependencies between
operations. A node of the graph can represent a reference
to a single operation or a concurrent loop (PAR i=1,N)
applied on a sequence of operations. Some nodes of the
graph include descriptions of steps in the algorithm.

5. Specializations for the method
5.1. Description of the IVPsto be solved

We have applied the method to two stiff IVPs:

a) An IVP, noted as Vortex, which models the evolution of
a singular vortex patch governed by a two-dimensional in-
compressible fluid flow [3]. An integro-differential equa-
tion of the form % = ... isknown, where r(t, ¢) € R?
is a parameterization of the boundary of the patch contour
fort > 0and ¢ € [0,1].

Supposing the vortex patch boundary has been parame-
terized by using N points (N must be even) equally dis-
tributed r; = (T’il,rig), i=1,...,N+1 (’I"l = IrN+1 and
r2 = rn42), the integro-differential equation can be nume-
rically evaluated [3] to obtain the following ODE system:

F) N+1 ( )

L aj(ri —Tj ‘ ‘ ‘ ‘

ot Z m((n—m)-(r]ﬂ —r;))
J=Llri#r;

ai(rit1 — 1)

o ,  i=1,...,N

IN: yo

!

EldpldV(...,yo,Yo)
Build the initial stage vector Yo

Yo
C While (t1<tf) )

InitVectors(..., Yo,W,Yn,X)
Initialize stage vectors

MJacobian(...,Jn)

Compute Jacobian Jn

‘Jn W, Yn, X
PAR i=1,4
Msumld(d,-di*h,Jn,LUi) W Yn X

LUdecomp(d,d,LUi) T
Factorize LUi=I-dihJn
i LUI, i=1.4

v
> While( not convergence) )

ComputeR (..., f,Yn,W.X,R)
Compute Vector R”
LR
PAR i=1,4 Veopy (d,Ri,DXi)
SolveSystem (..., LUI,...,DXi)
Solve System LUi DXi=Ri
LDX
MVproduct(..., h,Jn,DXi,..,JDi)
Compute subvector JDi
JD

PAR i=1,4 Vsum(d,-1,DXi,Ri)

FORI=1,2 {

PAR i=1,4

Vsum(d,..., JD JRi) }
Compute subvector R
1r

Vsum(..., Ri, DXi)
Solve LUiDXi=Ri and update DXi
iDX
Update vectors X, Yn, DX ‘
iX, Yn, DX

‘ UpdateVectors(..., DX, X,Yn)

X, Yn, convergence

ConvergenceCtrl (..., DX rtol,atol,convergence) ‘

vo, Yo, Yn, t

‘ ErrorCtrl(..., yo,Yo,Yn t, ...)

\ Vcopy(d, yo, yf) |

OUT: yf

Figure 4. Graphical description of the general
module specification for the method

where a; = ay4+1 = land, forall j = 2,...,N,ifjis
even then o; = 4 else «; = 2. The initial value is given for
the parameterization of the boundary of a circle with radius
1 centred at the origin.

Since each point r;, i = 1,..., N has two real coor-
dinates (r;1,r;2), the resultant system has 2N ODEs and
involves a fully dense Jacobian.

b) A stiff VP, noted as ConvDiff2D, which is based on
a partial differential equation describing the linear decay
of a two dimensional model convection-diffusion equation



bounded by two parallel walls [14] where 0 < 2 < 200,
0 <y < landt > 0. A suitable finite-difference dis-
cretization of the spatial derivatives by using an uniform
N, x N, grid leads to a system of N, N, ODEs:

Oui j _ _ Mug;—18ui_q,;4+9%u;_2,;—2u;_3,;
ot

6Ax
+L_ui,j+2+16ui,j+1_30'“i,j+16ui,j—1_ui,j—2
10 12Ay2
_ —uig4ot8uy 41 —8ui 14U 5 i=1,...,Na, j=1,....Ny
127y )

Here, Az = %%, Ay = ﬁ The translation of
the boundary conditions is suitably defined in [14]. The ini-
tial conditions are u(z, y,0) = ef¥/2sin(3my)cos(0.01z).
The components of the system are ordered according to:
ULy -~y UINy s - - - U215 - -, U2N 5 - - -, UN, N, - With this or-
dering, the Jacobian of the problem has a banded structure
with 2 subdiagonals and 3V, superdiagonals.

5.2. The specialized module specification

In the case of the dense IVP, it is not necessary to per-
form changes on the general module specification because
the matrices involved in the operations are dense. In the
case of the IVP with banded Jacobian (ConvDiff2D), seve-
ral concepts must be replaced by their specializations for
banded matrices. The new specialized concepts include
new parameters (miA, muA) which represent the number
of subdiagonals and superdiagonals respectively of the ma-
trix involved (A). Although, in this case, the specialization
consists of replacing the concepts affected by specializa-
tions, in numerous circumstances it may be necessary to
carry out more important changes in the general module
specification.

6. Parallel Design Decisions to derive imple-
mentations of the method

Starting from the specialized module specifications (for
dense and banded systems) obtained for the method, we
derive efficient implementations of this parallel numerical
scheme for a cluster of 8 PCs based on Pentium Il (333
MHz). The interconnection network is a switched fast
Ethernet where we have experimentally obtained the values
ts =~ 286us and t,, ~ 1.34us for MPI Send and Receive
primitives [7]. We assume that all the vector arguments of
the solver (the initial vector yo and the solution vector y ¢)
are replicated among the processors. For the Vortex IVP, we
consider a dimension d such that d < 1400. For the Con-
vDiff2D IVP, we suppose that IV, varies between 24 and 40.

6.1. Scheduling and L oad Balancing

A graphical description of the processor groups involved
in the GSPMD computation is shown in figure 5. A logical
1 x 8 processor grid (the global group G1) is partitioned
into four groups, each with 2 processors (G4(4) j=1,...,4)-

oo o] oy ]3] eo] 09 09 e
G4(1) G4(2) G4(3) Ga(4)
G1
Dense case Banded case
DATA.DISTRIBUTION DATA.DISTRIBUTION

CONST (MB=D/2) CONST (NR=MlIn+Muln+1,
BCYCLIC(1,MB,G1) VDGI MB=D/2)
BCYCLIC(D,D/8,G1) MDGl1 BCYCLIC(1,MB,G1) VDG
REP i=1,4 BCYCLIC(NR,D/8,G1) MDG1

BCYCLIC(64 , 1 ,G4(i)) VDGA(i)
BCYCLIC(64,64,G4(i)) MDG4(i)

REP i=1,4
BCYCLIC(1,MB ,G4(i)) VDG4(i)
BCYCLIC(NR,MB,G4(i)) MDG4(i)

Figure 5. Description of the processor groups
and the data distribution types

A graphical description of the parallel frame program for
dense systems is shown in figure 6. We do not describe
the parallel frame program for banded systems because we
simply explain the differences regarding the dense case.

In figure 6, the nodes represent a realization call or para-
llel loops applied on a sequence of realization calls. Every
realization call is assigned to a processor group by using
the keyword ON. The arrows denote the real execution or-
der among realizations. When data redistribution between
connected nodes is necessary, these arrows are labelled with
redistributions which are indicated as transitions among
arrays distributed according to different distribution types:

Distrib.Typel Arrayl — Distrib.Type2 Array2

As can be seen in figure 6, the operations executed in para-
Ilel on the disjoint groups G4(7) j=1,... 4, correspond to con-
current loops, which denote most of the task parallelism of
the method. The remaining operations are executed con-
secutively on the group G1. With these decisions, an even
distribution of the computational load is achieved.

6.2. Instantiation

The particular data distribution types used in the instan-
tiation are described in the DATA.DISTRIBUTION Sec-
tion of the parallel frame program (see figure 5), where the
block-cyclic distribution template is instantiated by speci-
fying a block size (m rows and n columns) and a previously
defined group G:  BCY CLIC(m,n,G) Distrib.Type.

In figure 6, the arguments of a realization call which are
distributed (not replicated) on a group with more than one
processor are written in boldface and preceded by the parti-
cular data distribution type.

In the following, we will briefly analyse the decisions
taken in the instantiation for dense and banded systems.
Dense system version

The operations which can be computed independently
for each stage (see figure 4) are performed in parallel on dis-



IN: REP(G1) yo

Beyclic_E1dpIdV (...,VDG1 Yo) ON G1

While (t<tf) <

[ Block_MJacobian (..., MDG1 Jn) ON G1 |

FOR i=1,4
MDG1 Jn —> MDG4(i) Jn

PAR i=1,4 ON G4()]|
BCyclic_Msumld (..., MDG4(i) Jn, LUi)
PDGETREF (..., MDG4(i) LUi, ...)

\ BCyclic_InitVectors (..., VDGI Yo,W,Yn,X) ON G1 \

»( While ( not convergence) )

ComputeR (..., VDG1 Yn,W,X,R) ON G1
FOR i=14
VDGI1 Ri—> VDG4(i) R4

PAR i=1,4 ON G4()
PDCOPY (..., VDG4(i) R4, DX4)
PDGETRS (..., MDG4(i) LUi, ....VDG4(i) DX4)
PDGEMV (.., h, MDG4(i) Jn, VDG4(i) DX4, JD)
FOR i=14
FOR [=1,2
v VDGA4(i) JD —> VDG4(2((i-1)/2)+1) JDZ[

PAR i=1,4 ON G4(i)]
PDAXPY (..., -1.0, VDG4(i) R4,DX4)
FOR /=1,2 {PDAXPY (.., VDG4(i) JD2 , R4)}
PDGETRS (..., MDG4(i) LUi, .._.VDG4(i) R4)
PDAXPY (..., 1.0,VDG4(i) R4,DX4)
FOR i=1,4
VDG4(i) DX4 —> VDG DXi
| UpdateVectors (..., VDG1 DX,X,Yn) ON G1_|

—f ConvergenceCtrl (..., VDG1 DX rtol,atol,convergence) ON G1 ‘

\ ErrorCtrl (..., VDGI Yo,Yn.t,...) ON G1 —

[DCOPY (...yo, y/) ON G1 |

OUT: REP(G1) yf'

Figure 6. Graphical description of the parallel
frame program for dense Jacobian

joint groups of two processors (G4(3) ;=1,....4). To perform
the calculations associated to each stage of the method, we
selected realizations from the parallel libraries PBLAS and
ScaLAPACK [1].

In order to perform the LU decompositions and system
solutions for each stage, we used the ScaLAPACK reali-
zations PDGETRF (LU Factorization) and PDGETRS (Sys-
tem solution) following a 64 x 64 block-cyclic distribution
(M DG4(i)i=1,...,4) for their matrix argumentsand a 64 x 1
block-cyclic distribution (V DG4(7) ;=1,....4) for the vector.
These choices provide good performance.

To compute an approximation to the Jacobian (concept
MJacobian), we used the Block MJacobian realiza-
tion which computes the Jacobian according to a block col-
umn distribution and gives the best runtime results.

The layout of the vectors R, DX (D)) and JD does
not match perfectly in different computation phases. How-
ever the redistributions of these vectors do not require a
great deal of interprocessor communication and, despite

the redistribution of the Jacobian matrix, redistribution ex-
penses are not high compared with computation costs.
Banded system version

The specialized concepts used to deal with the banded
structure of their array arguments have been instantiated
with realizations which assume a compact storage scheme
for banded matrices [1] in which an n x n banded ma-
trix A with bandwith miA + muA + 1 is stored in an
(mlA+ muA + 1) x n array. Moreover, these realizations
assume a block column distribution scheme for the matrix
arguments. The ScaLAPACK realizations PDGBTRF and
PDGBTRS [1] have been used to solve the banded linear
systems. These realizations assume a block column distri-
bution scheme for the compact representation of the banded
matrix, and a block row distribution for the vector.

To compute the vectors JD; = thnDZ(J), we used a
parallel version of the banded matrix-vector product, which
achieves good results and assumes the same data distribu-
tion types as the PDGBTRS realization. This choice mini-
mized the redistribution expenses.

Now, the redistribution costs are lower than in the dense
case because the distributions of the vectors is hardly ever
modified during computation. However, the locality is re-
duced, because the computation costs are much lower.

7. Experimental Results

The parallel frame programs obtained were translated
into a message passing program which is expressed in For-
tran augmented with calls to routines of a version of the
BLACS library [6] implemented onto MPI. We compared
the runtime performance of these programs with two se-
quential solvers: one of the most efficient stiff ODE solvers,
the experimental code RADAUS [8], and a sequential ver-
sion of the optimized Newton-PILSRK method that we
called SNPILSRK. Both solvers can take advantage of the
banded structure of the Jacobian.

Speedup values have been obtained by comparing the
parallel execution times with the execution time of the se-
quential programs over one integration step. The resultant
speedup values obtained for the dense IVP with different
dimensions reveal (see figure 7) that with more than 300
equations, a speedup of 5 to 7.55 can be achieved on 8 nodes
with regard to RADAUS. The results obtained with regard
to SNPILSRK are better, achieving a superlinear speedup
with more than 700 equations. When the structure of the
Jacobian is banded (see figure 8), we considered the most
significant parameter of the problem size to be the number
of nonzero entries in the Jacobian. As can be seen, perfor-
mance is degraded because the locality is reduced. How-
ever, a speedup of 3.5 to 4.35 can be achieved with respect
to RADAUS and a speedup of 3.8 to 5.7 can be achieved
with respect to SNPILSRK.
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Figure 7. Speedup with the Vortex IVP
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Figure 8. Speedup with the ConvDiff2D IVP

8. Conclusions

A methodological approach to enable the separate treat-
ment of different aspects during the derivation of a parallel
stiff ODE solver is proposed. These aspects are:

a) Functional aspects. A reusable description of the
functionality and the task parallelism of the method is
obtained in the concept composition step regardless of
assumptions about the particular problems to be solved and
the parallel machine. This permits us to postpone as late as
possible dealing with architectural details and to focus on
optimizations independent of the machine and the problem.

b) Aspects dependent on the problem structure: The
adaptation of the results of the above step to the pro-
blem structure is carried out in a machine-independent way
during the specialization step. This enables the exploitation
of this structure in the next step.

¢) Performance aspects dependent on both the archi-
tecture and the problem: All the parallel design decisions
which affect the performance of the final program have to
be taken in the last step, taking into account both the para-
meters of the problem and the machine.

The methodological proposal has been employed to de-

rive an efficient stiff ODE integrator for a PC cluster with
8 nodes. The integrator is based on an advanced numerical
method which has been optimized and adapted to the so-
lution of two modelling problems with different structural
characteristics. Speedup comparisons with regard to one of
the most advanced sequential stiff ODE solvers have been
made. The implementation for dense systems achieves a
speedup of 5 to 7.55. The implementation for banded sys-
tems achieves a speedup of 3.5 to 4.35.
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