SIMULATION OF SHALLOW WATER SYSTEMS USING GPUs

M. J. Castro M. Lastra J. M. Mantas C. Urena
Depto. de Analisis Matematico Depto. de Lenguajes y Sistemas Informaticos

Facultad de Ciencias
Univ. de Malaga. 29071. Malaga
castro@anamat.cie.uma.es

E.T.S. Ingenieria Informatica y Telecomunicaciones
Univ. de Granada. 18071 Granada

mlastral@ugr.es jmmantas@ugr.es curena@ugr.es

Introduction

e Goal: Efficient Simulation of one or two layer fluids that can be
modeled by the shallow water systems.

e Applications: simulation of rivers, channels, oceanic flows, ...

SPAIN

Mediterranean Sea

Atlantic Ocean %

p=T= F
. c
. i
» by a o
- - '\."
= P - . F
. - oF L
7 i e~
3 T
. - L i i
b 1 b,
AR Ty ¥ A
™ .
=5 B A i
A
. N . 1
- I
i A -3 . { . fad T
|i = ~
o g = ik
i

MOROCCO

e Problem: Very long lasting simulations in big computacional
domains require extremely efficient high performance solvers.

e Cost effective solution: To exploit the parallel processing
power of modern Graphics Processing Units (GPUs) to speedup
the numerical solution of the model.

— Modern GPUs offer over 100 processing units optimized for per-
forming floating point operations.

— We need to adapt the calculations and the data domain of the
numerical algorithm to the graphics processing pipeline.

1

Numerical Scheme (2)

Flt = P! [A%(W]n — W) — ST(H; — HZ-)} |

1 -1
P,Z- =5 ,Z : {] - sgn(DZ)} : (KZ)
where A% e R>*3 and SZ-} € IR3 depends on W/ and W]n, D% is
a diagonal matrix whose coeflicients are the eigenvalues of A% and

the columns of K Z e TR3*3 are the associated eigenvectors.

Computation of At"

—ZjENeighborsi ‘ Fij ‘H D?j HOO_
2y | Vi |

where 0 < v > 1.

Remarks:

e High arithmetic intensity and locality (the computation for each
edge or volume only depends on data from neighbour volumes).

e High degree of potential data parallelism.

Computing Units in the GPU

e Fach computing step must be performed in a data parallel fashion
following a fragment shader written in Cg.

e The same code is applied to each fragment (volume or edge) and
other textures can be accessed to obtain input data.

Volume-based fragment computing scheme

Edge data Volume data

Fragments

rR=w[]}|C ;1.:11-’[1] (B =w[2])

7

Mathematical model: One layer
shallow system

PDE system which models a shallow layer of fluid that occupies a
bounded subdomain D C IR? under the influence of the gravitational
acceleration g.

,
oh . Oq, . O0q,
ot Tar Ty =V

0. , 0 (4, g2
at+%(ﬁ+§h)+
dq O (94 0
3_Ify+(9az(hy)+8_y(

Problem: To study the time evolution of W(x,y) = |h, gz, gy
fulfilling the Shallow water equations.

\

]T

Depth function measured
from a fixed level of reference
(Bottor_n topography)

“Thichness of the water layer

[ax(x,y,t), dy(x,y,f)] = depth-averaged velocity of the layer at (x,y) and time ¢

2

Input data and boundary conditions

Build Finite Volume Vmesh with initial conditions

Data Parallelism
@h edge a (Vi->Vj) Sources

¢ Computation for
each edge

can be performed

simultaneously

— Compute |I',|Fij
— Update Addition for V,, V,
— Compute local At

- —— ¢ 777

Compute At =min {local At}

@ch volu@<

Computation for
each volume can
be performed
simultaneously

@ o

Input data and boundary conditions

Build Finite Volume mesh
with initial conditions

/ GPU

4 Edge-based Fragment Shader *
— Compute |I' ;| Fij While (t<t,,,)

— Update Addition for V,, V, 1
— Compute

Initialize GPU Textures

(Per volume local At F. S.
T, [11D,ll.

Uniform Stream reduction
to compute At =min {local At

(Boundary conditions F. S.
Q)date Ghost volume state J

Numerical Scheme

e The shallow water system is discretized by means of a Finite Vol-
ume scheme.

e Domain D is divided in M finite volumes (closed polygons): V; C
R?, i=1,..., M, with area | V; |.

Normal vector to 1]

Volume state vector

=

................... Common Edge
of Viand Vj

Time stepping

A At »
Wii Wi ——»... »=Wi" Wi ». ..

AP
Wt —
T

jeNetghbors;

| Ty | F

3

Data Storage in GPU

Information about volumes and edges must be stored as 2D textures
(it allows the storage of n x m floating point 4-tuples):

e T'wo textures to store volume-based information (one 4-tuple per
volume): one stores the values of W (x,y,t) for each volume and
the other stores constant data associated to each volume.

e One texture to store edge-based information (4-tuple per edge).

Arrangement and structure in 2D textures (2x2 mesh)

host Volume

~~ Volume num. 6)

| | ~ Volume-based state
 Edge-based texture | | texty

| waunn

i astt ",

. ")
E X y F
| e, Y

' 0

\';‘eogt";f') Volume-based constant
o e texture 4-tuple

/

Boundary edge? - Depth
| T " Ghost volume?

\\ Orientation of
" normals to edges

e 1 m x 10 m rectangular channel with H (z,y) = 1 — cos(2mx)/2.
e Time interval [0, 5] with v = 0.9 and wall boundary conditions.
o Wiz, y) = [H(z,y) +2x <5), 0, 0.

e CPU: Intel Xeon Nocona 2.66 Ghz. SSE-optimized code (Intel
[PP 4.1). Intel C4+4 comp. em64t extension (-O2).

e GPU: NVIDIA GeForce 8300 Ultra. OpenGL + Cg Code.

Speedup obtained with the GPU program vs. CPU

I\iVI DIA GéForce 880d Ultra —a

Mesh size| Trpyy \Topy
00107 105 | 053
W0x20) 809 | 111
A0 x40 | 6423 | 263
S00% 80 | 2106 | 8.36
160 X 16 404658 4079 50000 100000 150000 200000 250000

Number of volumes

Conclusion: Simulations on an NVIDIA GeForce 8800 Ultra
GPU (about 700 dollars) are found to be up to two orders of magni-
tude faster than the SSE-optimized CPU version of the code.

9

