Simulation of Shallow Water systems using GPUs
 M. J. Castro
 Depto. de Análisis Matemático
 Facultad de Ciencias
 Univ. de Málaga. 29071. Málaga
 castro@anamat.cie.uma.es
 M. Lastra
 Depto. de Lenguajes y Sistemas Informáticos
 E.T.S. Ingeniería Informática y Telecomunicaciones Univ. de Granada. 18071 Granada jmmantas@ugr.es
 mlastral@ugr.es
 curena@ugr.es

Introduction

- Goal: Efficient Simulation of one or two layer fluids that can be modeled by the shallow water systems.
- Applications: simulation of rivers, channels, oceanic flows,

- Problem: Very long lasting simulations in big computacional domains require extremely efficient high performance solvers.
- Cost effective solution: To exploit the parallel processing power of modern Graphics Processing Units (GPUs) to speedup the numerical solution of the model.
- Modern GPUs offer over 100 processing units optimized for performing floating point operations.
We need to adapt the calculations and the data domain of the numerical algorithm to the graphics processing pipeline

$$
1
$$

- The shallow water system is discretized by means of a Finite Volume scheme
- Domain D is divided in M finite volumes (closed polygons): $V_{i} \subset$ $\mathbb{R}^{2}, \quad i=1, \ldots, M$, with area $\left|V_{i}\right|$

$$
\left\{\begin{array}{l}
\frac{\partial h}{\partial t}+\frac{\partial q_{x}}{\partial x}+\frac{\partial q_{y}}{\partial y}=0 \\
\frac{\partial q_{x}}{\partial t}+\frac{\partial}{\partial x}\left(\frac{q_{x}^{2}}{h}+\frac{g}{2} h^{2}\right)+\frac{\partial}{\partial y}\left(\frac{q_{x} q_{y}}{h}\right)=g h \frac{\partial H}{\partial x} \\
\frac{\partial q_{y}}{\partial t}+\frac{\partial}{\partial x}\left(\frac{q_{x} q_{y}}{h}\right)+\frac{\partial}{\partial y}\left(\frac{q_{y}^{2}}{h}+\frac{g}{2} h^{2}\right)=g h \frac{\partial H}{\partial y}
\end{array}\right.
$$

Problem: To study the time evolution of $W(x, y)=\left[h, q_{x}, q_{y}\right]^{T}$ fulfilling the Shallow water equations.

Time stepping

$W_{i}^{n+1}=W_{i}^{n}-\frac{\Delta t^{n}}{\left|V_{i}\right|} \sum_{j \in \text { Neighbors }_{i}}\left|\Gamma_{i j}\right| F_{i j}^{n}$

Numerical Scheme (2)

$F_{i j}^{n}=P_{i j}^{n}\left[A_{i j}^{n}\left(W_{j}^{n}-W_{i}^{n}\right)-S_{i j}^{n}\left(H_{j}-H_{i}\right)\right]$
$P_{i j}^{n}=\frac{1}{2} K_{i j}^{n} \cdot\left[I-\operatorname{sgn}\left(D_{i j}^{n}\right)\right] \cdot\left(K_{i j}^{n}\right)^{-1}$
where $A_{i j}^{n} \in \mathbb{R}^{3 \times 3}$ and $S_{i j}^{n} \in \mathbb{R}^{3}$ depends on W_{i}^{n} and $W_{j}^{n}, D_{i j}^{n}$ is a diagonal matrix whose coefficients are the eigenvalues of $A_{i j}^{n}$ and the columns of $K_{i j}^{n} \in \mathbb{R}^{3 \times 3}$ are the associated eigenvectors.

Computation of Δt^{n}
$\Delta t^{n}=\min _{i=1, \ldots, M}\left\{\left[\frac{\sum_{j \in \text { Neighbors }_{i} \mid}\left|\Gamma_{i j}\right|\left\|D_{i j}^{n}\right\|_{\infty}}{2 \gamma\left|V_{i}\right|}\right]^{-1}\right\}$
where $0<\gamma \geq 1$.
Remarks:

- High arithmetic intensity and locality (the computation for each edge or volume only depends on data from neighbour volumes)
- High degree of potential data parallelism.

Data Storage in GPU

Information about volumes and edges must be stored as 2D textures (it allows the storage of $n \times m$ floating point 4-tuples):

- Two textures to store volume-based information (one 4-tuple per volume): one stores the values of $W(x, y, t)$ for each volume and the other stores constant data associated to each volume.
- One texture to store edge-based information (4-tuple per edge)

