
Simulation of Shallow Water systems using GPUs

M. J. Castro M. Lastra J. M. Mantas C. Ureña

Depto. de Análisis Matemático Depto. de Lenguajes y Sistemas Informáticos

Facultad de Ciencias E.T.S. Ingenieŕıa Informática y Telecomunicaciones

Univ. de Málaga. 29071. Málaga Univ. de Granada. 18071 Granada

castro@anamat.cie.uma.es mlastral@ugr.es jmmantas@ugr.es curena@ugr.es

Introduction

•Goal: Efficient Simulation of one or two layer fluids that can be
modeled by the shallow water systems.

•Applications: simulation of rivers, channels, oceanic flows, ...

•Problem: Very long lasting simulations in big computacional
domains require extremely efficient high performance solvers.

•Cost effective solution: To exploit the parallel processing
power of modern Graphics Processing Units (GPUs) to speedup
the numerical solution of the model.

– Modern GPUs offer over 100 processing units optimized for per-
forming floating point operations.

– We need to adapt the calculations and the data domain of the
numerical algorithm to the graphics processing pipeline.

1

Mathematical model: One layer
shallow system

PDE system which models a shallow layer of fluid that occupies a
bounded subdomain D ⊂ IR2 under the influence of the gravitational
acceleration g.

∂h
∂t + ∂qx

∂x +
∂qy

∂y = 0

∂qx

∂t + ∂
∂x

(

q2

x
h + g

2h
2
)

+ ∂
∂y

(qxqy

h

)

= gh∂H
∂x

∂qy

∂t + ∂
∂x

(qxqy

h

)

+ ∂
∂y

(

q2

y

h + g
2h

2

)

= gh∂H
∂y

Problem: To study the time evolution of W (x, y) = [h, qx, qy]T

fulfilling the Shallow water equations.

2

Numerical Scheme

•The shallow water system is discretized by means of a Finite Vol-
ume scheme.

•Domain D is divided in M finite volumes (closed polygons): Vi ⊂
IR2, i = 1, . . . ,M, with area | Vi |.

W n+1
i = W n

i −
∆tn

| Vi |

∑

j∈Neighborsi

| Γij | F n
ij

3

Numerical Scheme (2)

Fn
ij = Pn

ij

[

An
ij(W

n
j − Wn

i) − Sn
ij(Hj − Hi)

]

.

Pn
ij =

1

2
Kn

ij ·
[

I − sgn(Dn
ij)

]

· (Kn
ij)

−1

where An
ij ∈ IR3×3 and Sn

ij ∈ IR3 depends on Wn
i and Wn

j , Dn
ij is

a diagonal matrix whose coefficients are the eigenvalues of An
ij and

the columns of Kn
ij ∈ IR3×3 are the associated eigenvectors.

Computation of ∆tn

∆tn = min
i=1,...,M

[
∑

j∈Neighborsi
| Γij |‖ Dn

ij ‖∞

2γ | Vi |

]−1

where 0 < γ ≥ 1.

Remarks:

•High arithmetic intensity and locality (the computation for each
edge or volume only depends on data from neighbour volumes).

•High degree of potential data parallelism.

4

Numerical Scheme (3)

5

Data Storage in GPU

Information about volumes and edges must be stored as 2D textures
(it allows the storage of n × m floating point 4-tuples):

•Two textures to store volume-based information (one 4-tuple per
volume): one stores the values of W (x, y, t) for each volume and
the other stores constant data associated to each volume.

•One texture to store edge-based information (4-tuple per edge).

6

Computing Units in the GPU

• Each computing step must be performed in a data parallel fashion
following a fragment shader written in Cg.

•The same code is applied to each fragment (volume or edge) and
other textures can be accessed to obtain input data.

Volume-based fragment computing scheme

7

Computing Phases in GPU

8

Performance Results

• 1 m × 10 m rectangular channel with H(x, y) = 1 − cos(2πx)/2.

•Time interval [0, 5] with γ = 0.9 and wall boundary conditions.

•W 0
i (x, y) = [H(x, y) + 2(x < 5), 0, 0]T .

•CPU: Intel Xeon Nocona 2.66 Ghz. SSE-optimized code (Intel
IPP 4.1). Intel C++ comp. em64t extension (-O2).

•GPU: NVIDIA GeForce 8800 Ultra. OpenGL + Cg Code.

 0

 20

 40

 60

 80

 100

 120

 0 50000 100000 150000 200000 250000

Number of volumes

Speedup obtained with the GPU program vs. CPU

NVIDIA GeForce 8800 Ultra

Conclusion: Simulations on an NVIDIA GeForce 8800 Ultra
GPU (about 700 dollars) are found to be up to two orders of magni-
tude faster than the SSE-optimized CPU version of the code.

9

