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Introduction

•Goal: Efficient Simulation of one or two layer fluids that can be
modeled by the shallow water systems.

•Applications: simulation of rivers, channels, oceanic flows, ...

•Problem: Very long lasting simulations in big computacional
domains require extremely efficient high performance solvers.

•Cost effective solution: To exploit the parallel processing
power of modern Graphics Processing Units (GPUs) to speedup
the numerical solution of the model.

– Modern GPUs offer over 100 processing units optimized for per-
forming floating point operations.

– We need to adapt the calculations and the data domain of the
numerical algorithm to the graphics processing pipeline.
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Mathematical model: One layer
shallow system

PDE system which models a shallow layer of fluid that occupies a
bounded subdomain D ⊂ IR2 under the influence of the gravitational
acceleration g.
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Problem: To study the time evolution of W (x, y) = [h, qx, qy]T

fulfilling the Shallow water equations.
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Numerical Scheme

•The shallow water system is discretized by means of a Finite Vol-
ume scheme.

•Domain D is divided in M finite volumes (closed polygons): Vi ⊂
IR2, i = 1, . . . ,M, with area | Vi |.
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Numerical Scheme (2)
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where An
ij ∈ IR3×3 and Sn

ij ∈ IR3 depends on Wn
i and Wn

j , Dn
ij is

a diagonal matrix whose coefficients are the eigenvalues of An
ij and

the columns of Kn
ij ∈ IR3×3 are the associated eigenvectors.

Computation of ∆tn

∆tn = min
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where 0 < γ ≥ 1.

Remarks:

•High arithmetic intensity and locality (the computation for each
edge or volume only depends on data from neighbour volumes).

•High degree of potential data parallelism.
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Numerical Scheme (3)
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Data Storage in GPU

Information about volumes and edges must be stored as 2D textures
(it allows the storage of n × m floating point 4-tuples):

•Two textures to store volume-based information (one 4-tuple per
volume): one stores the values of W (x, y, t) for each volume and
the other stores constant data associated to each volume.

•One texture to store edge-based information (4-tuple per edge).
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Computing Units in the GPU

• Each computing step must be performed in a data parallel fashion
following a fragment shader written in Cg.

•The same code is applied to each fragment (volume or edge) and
other textures can be accessed to obtain input data.

Volume-based fragment computing scheme
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Computing Phases in GPU
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Performance Results

• 1 m × 10 m rectangular channel with H(x, y) = 1 − cos(2πx)/2.

•Time interval [0, 5] with γ = 0.9 and wall boundary conditions.

•W 0
i (x, y) = [H(x, y) + 2(x < 5), 0, 0]T .

•CPU: Intel Xeon Nocona 2.66 Ghz. SSE-optimized code (Intel
IPP 4.1). Intel C++ comp. em64t extension (-O2).

•GPU: NVIDIA GeForce 8800 Ultra. OpenGL + Cg Code.

 0

 20

 40

 60

 80

 100

 120

 0  50000  100000  150000  200000  250000

Number of volumes

Speedup obtained with the GPU program vs. CPU 

NVIDIA GeForce 8800 Ultra

Conclusion: Simulations on an NVIDIA GeForce 8800 Ultra
GPU (about 700 dollars) are found to be up to two orders of magni-
tude faster than the SSE-optimized CPU version of the code.
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