SIMULATION OF SHALLOW WATER SYSTEMS USING GPUS

M. J. Castro Depto. de Análisis Matemático Facultad de Ciencias Univ. de Málaga. 29071. Málaga castro@anamat.cie.uma.es M. Lastra J. M. Mantas C. Ureña Depto. de Lenguajes y Sistemas Informáticos E.T.S. Ingeniería Informática y Telecomunicaciones Univ. de Granada. 18071 Granada mlastral@ugr.es jmmantas@ugr.es curena@ugr.es

Introduction

• **Goal**: Efficient Simulation of one or two layer fluids that can be modeled by the shallow water systems.

• Applications: simulation of rivers, channels, oceanic flows, ...

Mathematical model: One layer shallow system

PDE system which models a shallow layer of fluid that occupies a bounded subdomain $D \subset \mathbb{R}^2$ under the influence of the gravitational acceleration g.

Numerical Scheme

• The shallow water system is discretized by means of a Finite Volume scheme.

• Domain D is divided in M finite volumes (closed polygons): $V_i \subset \mathbb{R}^2$, $i = 1, \ldots, M$, with area $|V_i|$.

- **Problem**: Very long lasting simulations in big computational domains require extremely efficient high performance solvers.
- Cost effective solution: To exploit the parallel processing power of modern Graphics Processing Units (GPUs) to speedup the numerical solution of the model.
- Modern GPUs offer over 100 processing units optimized for performing floating point operations.
- We need to adapt the calculations and the data domain of the numerical algorithm to the graphics processing pipeline.

 $\begin{cases} \frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0\\ \frac{\partial q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_x^2}{h} + \frac{g}{2}h^2\right) + \frac{\partial}{\partial y} \left(\frac{q_x q_y}{h}\right) = gh\frac{\partial H}{\partial x}\\ \frac{\partial q_y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_x q_y}{h}\right) + \frac{\partial}{\partial y} \left(\frac{q_y^2}{h} + \frac{g}{2}h^2\right) = gh\frac{\partial H}{\partial y}\end{cases}$

Problem: To study the time evolution of $W(x, y) = [h, q_x, q_y]^T$ fulfilling the Shallow water equations.

 $[q_x(x,y,t), q_y(x,y,t)] =$ depth-averaged velocity of the layer at (x,y) and time t

Numerical Scheme (2) $F_{ij}^n = P_{ij}^n \left[A_{ij}^n (W_j^n - W_i^n) - S_{ij}^n (H_j - H_i) \right].$ $P_{ij}^n = \frac{1}{2} K_{ij}^n \cdot \left[I - sgn(D_{ij}^n) \right] \cdot (K_{ij}^n)^{-1}$

Input data and boundary conditions Build Finite Volume mesh with initial conditions

Data Storage in GPU

Information about volumes and edges must be stored as 2D textures (it allows the storage of $n \times m$ floating point 4-tuples):

Two textures to store volume-based information (one 4-tuple per volume): one stores the values of W(x, y, t) for each volume and the other stores constant data associated to each volume.
One texture to store edge-based information (4-tuple per edge).

where $A_{ij}^n \in \mathbb{R}^{3 \times 3}$ and $S_{ij}^n \in \mathbb{R}^3$ depends on W_i^n and W_j^n , D_{ij}^n is a diagonal matrix whose coefficients are the eigenvalues of A_{ij}^n and the columns of $K_{ij}^n \in \mathbb{R}^{3 \times 3}$ are the associated eigenvectors.

Computation of Δt^n

$$\Delta t^n = \min_{i=1,\dots,M} \left\{ \left[\frac{\sum_{j \in Neighbors_i} |\Gamma_{ij}| || D_{ij}^n ||_{\infty}}{2\gamma |V_i|} \right]^{-1} \right\}$$

where $0 < \gamma \ge 1$.

Remarks:

- High arithmetic intensity and locality (the computation for each edge or volume only depends on data from neighbour volumes).
- High degree of potential data parallelism.

- Each computing step must be performed in a data parallel fashion following a *fragment shader* written in Cg.
- The same code is applied to each fragment (volume or edge) and other textures can be accessed to obtain input data.

Performance Results

1 m × 10 m rectangular channel with H(x, y) = 1 - cos(2πx)/2.
Time interval [0, 5] with γ = 0.9 and wall boundary conditions.
W_i⁰(x, y) = [H(x, y) + 2(x < 5), 0, 0]^T.

• **CPU**: Intel Xeon Nocona 2.66 Ghz. SSE-optimized code (Intel IPP 4.1). Intel C++ comp. em64t extension (-O2).

• **GPU**: NVIDIA GeForce 8800 Ultra. OpenGL + Cg Code.

Conclusion: Simulations on an NVIDIA GeForce 8800 Ultra GPU (about 700 dollars) are found to be up to two orders of magnitude faster than the SSE-optimized CPU version of the code.