
DESIGN AND IMPLEMENTATION OF PREDICTORS FOR

ADDITIVE SEMI-IMPLICIT RUNGE-KUTTA METHODS

INMACULADA HIGUERAS∗, JOSÉ MIGUEL MANTAS† , AND TEO ROLDÁN‡

Abstract. Space discretization of some time-dependent partial differential equations gives rise
to stiff systems of ordinary differential equations. In this case, implicit methods should be used
and therefore, in general, nonlinear systems must be solved. The solutions to these systems are
approximated by iterative schemes and, in order to obtain an efficient code, good initializers should
be used. Recently, a parallel code based on some Runge-Kutta and additive Runge-Kutta methods
has been constructed, focusing especially on additive semi-implicit Runge-Kutta (ASIRK) methods.
The aim of the present paper is to develop efficient initializers for these methods.

Key words. Stage value predictors, Additive Runge-Kutta methods, IMEX Runge-Kutta me-
thods, ASIRK methods.

AMS subject classifications. 65L06, 65L05, 34-04, 65Y20, 65H10.

1. Introduction. Space discretization of some time-dependent PDEs [11, 12,
14, 21, 22, 27, 29, 30] gives rise to stiff systems of ordinary differential equations in
additive form

y′ = f(y) + g(y) , y(t0) = y0 , (1.1)

where f, g : R
k → R

k are sufficiently smooth functions with different stiffness pro-
perties. In these cases, implicit methods should be used and therefore, in general,
nonlinear systems must be solved.

For system (1.1), the numerical approximation at tn+1 = tn + h with an additive

Runge-Kutta method with coefficients (A, Â, bt, b̂t), is given by

yn+1 = yn + h (bt ⊗ Ik)F (Yn+1) + h (b̂t ⊗ Ik)G(Yn+1) , (1.2)

where yn is the previously computed solution at t = tn, and Yn+1 is the vector of
internal stages, Yn+1 = (Y t

n+1,1, . . . , Y
t
n+1,s)

t ∈ R
sk, obtained from

Yn+1 = e ⊗ yn + h (A⊗ Ik)F (Yn+1) + h (Â ⊗ Ik)G(Yn+1) . (1.3)

As usual, e = (1, . . . , 1)t ∈ R
s, F (Yn+1) = (f(Yn+1,1)

t, . . . , f(Yn+1,s)
t)t, G(Yn+1) =

(g(Yn+1,1)
t, . . . , g(Yn+1,s)

t)t and the symbol ⊗ denotes the Kronecker product. Follo-

wing the Runge-Kutta notation, we will establish that c = A e and ĉ = Â e.
Therefore, if the additive Runge-Kutta scheme is implicit and we are dealing with

nonlinear problems, to compute yn+1 from (1.2) the nonlinear system (1.3) must be
solved. In the context where additive ODEs (1.1) arise, nonlinear systems (1.3) are
usually solved with an iterative method which requires a predictor that must be as
accurate as possible in order to ensure a secure and fast convergence to the desired
solution. These kind of predictors, also known as stage value predictors or starting

∗Departamento de Ingenieŕıa Matemática e Informática, Universidad Pública de Navarra. 31006
Pamplona, Spain. (higueras@unavarra.es).

†Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada. 18071 Granada,
Spain. (jmmantas@ugr.es).

‡Departamento de Ingenieŕıa Matemática e Informática, Universidad Pública de Navarra. 31006
Pamplona, Spain. (teo@unavarra.es).

1

2 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

algorithms, have been studied for different problems in [7, 13, 24, 26]. The numerical
experiments done in these papers show that the use of high order predictors decreases
the number of iterations and therefore the computational cost of the numerical in-
tegration is reduced. Furthermore, in some situations, convergence problems can be
avoided with the use of efficient predictors.

Many techniques have been developed aiming at decreasing the overall compu-
tational cost of the numerical integration. For high dimension nonlinear problems,
a slight improvement in the numerical solver (the computational implementation of
which is straightforward) can give rise to a large saving in the computational cost. A
fairly sophisticated technique recently developed in [16, 18, 19] consists in exploiting
the parallelism in Runge-Kutta schemes (more precisely, RadauIIA method [6]) and
additive Runge-Kutta methods (namely, the LRR(3,2,2) scheme and additive semi-
implicit Runge-Kutta (ASIRK) methods studied e.g. in [15, 20] and [30] respectively).
The aim of this paper is to design and implement predictors for the additive Runge-
Kutta schemes considered in [18, 19], and show their relevance to decrease the overall
computational time.

The rest of the paper is organized as follows. Section 2 is devoted to stage value
predictors for additive Runge-Kutta methods; predictors for this kind of methods are
reviewed and a direct application of the results from [7] allows us to deal with the
LRR(3,2,2) method. In Section 3 we consider ASIRK methods; with some transfor-
mations, the material in [7] gives us predictors for these schemes. Finally, in Section
4, we present and illustrate some numerical experiments that show the efficiency of
the new initializers constructed. The paper ends with some conclusions.

2. Predictors for additive Runge-Kutta methods. In this section we con-
sider general additive Runge-Kutta methods (1.2)-(1.3) such that at least one of the
Runge-Kutta schemes is implicit. In this case, if we are dealing with nonlinear pro-
blems, the nonlinear system (1.3) must be solved. When this system is solved with
an iterative scheme, a predictor for the internal stages, denoted on the following by

Y
(0)
n+1, is needed.

In [7] initializers for additive and partitioned Runge-Kutta methods are considered
and a detailed study is performed. The approach followed in that paper is an extension
of the one done in [13, 24, 26] for Runge-Kutta methods. The numerical experiments
in [7] show that a good predictor for the implicit method does not necessarily mean
that it is a good one for the additive Runge-Kutta scheme. In order to construct
efficient stage value predictors for additive Runge-Kutta methods, we must take into
account both Runge-Kutta methods involved in the additive scheme.

In this paper, we assume that we already have a given step from tn−1 to tn =
tn−1 + hold, and therefore yn−1, yn and Yn are known values, and we are about to
give a new step from tn to tn+1 = tn + h, with stepsize h = r hold. Proceeding in this
way, r is the stepsize ratio and we are dealing with the most general case of variable
stepsize. In this context, we consider stage value predictors of the form

Y
(0)
n+1 = b0 ⊗ yn−1 + (B ⊗ Ik)Yn , (2.1)

where the vector b0 and the matrix B are determined by imposing order conditions.
Observe that predictor (2.1) has no additional cost because the vectors involved,
namely yn−1 and Yn, are already known from the previous time step.

The order ν of a predictor is defined as the largest integer which satisfies

‖ Yn+1 − Y
(0)
n+1‖ = O(hν+1) .

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 3

A detailed study, including general order conditions, can be seen in [7]. In particular,

for additive RK schemes with coefficients (A, Â, bt, b̂t), it is proved that the stage value
predictor (2.1) achieves order 2 if the following set of order conditions are fulfilled:

Consistency: b0 + B e = e ,

Order 1: B c = e + r c ,

B ĉ = e + r ĉ ,

Order 2: B A c = ebtc + rA(e + rc) ,

B A ĉ = ebtĉ + rA(e + rĉ) ,

B Â c = eb̂tc + rÂ(e + rc) ,

B Â ĉ = eb̂tc + rÂ(e + rĉ) .

Observe that some order conditions involve the coefficients of both methods; conse-
quently, together with the order conditions for each method, some coupling conditions
are required. Unfortunately, the set of order conditions increases considerably with
the order; for example 14 additional order conditions are required to obtain order 3.
Therefore, in the general case, c 6= ĉ, it will be difficult to obtain high order stage
value predictors.

However, if c = ĉ, many order conditions are equivalent and therefore, for those
methods, it would be easier to construct high order stage value predictors. In this
case, the set of order conditions is reduced to

Consistency: b0 + B e = e ,

Order 1: B c = e + r c ,

Order 2: B A c = ebtc + rA(e + rc) ,

B Â c = eb̂tc + rÂ(e + rc) ,

Order 3: B A c2 = ebtc2 + rA(e + rc)2 , (2.2)

B A2 c = ebtAc + rAebtc + r2A2(e + rc) ,

B AÂ c = ebtÂc + rAeb̂tc + r2AÂ(e + rc) ,

B Â c2 = eb̂tc2 + rÂ(e + rc)2 ,

B ÂA c = eb̂tAc + rÂebtc + r2ÂA(e + rc) ,

B Â2 c = eb̂tÂc + rÂeb̂tc + r2Â2(e + rc)

where, as usual, given a vector u ∈ R
s, the vector uk ∈ R

s denotes the componentwise
k-th power of vector u.

The theory developed in [7] is valid for additive Runge-Kutta methods and, in

particular, for schemes (A, Â, bt, b̂t) containing an implicit and an explicit method.
These approaches, known in the literature as IMplicit-EXplicit (IMEX) Runge-Kutta
methods are used for additive ODEs of the form (1.1) where the function f contains
the non-stiff part of the problem and the function g the stiff one. In this situation,
an explicit method (A, bt) can be used for f whereas an implicit method (Â, b̂t) is
required for g [1, 11, 12, 20, 21, 22, 27].

4 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

As for Runge-Kutta methods, in many codes [19], a standard choice for stage
value predictors is the most recent numerical approximation yn, i.e.,

Y
(0)
n+1 = e ⊗ yn . (2.3)

It is straightforward to confirm that this predictor does not reach order 1 and therefore
it is not a good predictor. However, better stage value predictors are possible. In the
following example we show how to construct them for a method described in the
literature.

Example 1. In [20] an IMEX Runge-Kutta scheme, known as LRR(3,2,2), is
studied. Its coefficients are given by

0 0 0 0 0

1/2 1/2 0 0 0

1/3 1/3 0 0 0

1 0 1 0 0
0 1 0 0

0 0 0 0 0

1/2 0 1/2 0 0

1/3 0 0 1/3 0

1 0 0 3/4 1/4
0 0 3/4 1/4

(2.4)

Observe that for this method, c = ĉ, and hence, up to order 3, the set of order
conditions is simplified to (2.2). A simple analysis shows that it is not possible to
obtain a third order predictor and that the best one consists of a family of order 2. In
this case, the order conditions (2.2), up to order 2, may be written as

B
[

e | c | Ac | Âc
]

=
[

e − b0 | e + rc | ebtc + rA(e + rc) | eb̂tc + rÂ(e + rc)
]

.

For method (2.4) with the above equation we obtain a family of predictors of order 2
given by

B =

















−b01 0 0 1

1
2 (3r(r + 1) − 2b02) r(3r + 2) − 9

2r(r + 1) r + 1

2r2

3 + r − b03
4
3r(r + 1) −r(2r + 3) 2r

3 + 1

r(4r + 3) − b04 4r(r + 1) −9r(r + 1) (r + 1)2

















.

In this family, the case b0 = 0 corresponds to predictors obtained only from the internal
stages, such as the ones used in [19],

Y
(0)
n+1 = (B ⊗ Ik)Yn . (2.5)

For this predictor the matrix B is given by

B =

















0 0 0 1

3
2r(r + 1) r(3r + 2) − 9

2r(r + 1) r + 1

2r2

3 + r 4
3r(r + 1) −r(2r + 3) 2r

3 + 1

r(4r + 3) 4r(r + 1) −9r(r + 1) (r + 1)2

















. (2.6)

Observe that the first row in B gives that Y
(0)
n+1,1 = Yn,4 = yn. This agrees with the

fact that the first stage is explicit and therefore it is not initialized.

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 5

3. Predictors for additive semi-implicit Runge Kutta methods. In this
section we consider another class of additive methods studied in [30]. When applied
to (1.1), an s-stage additive semi-implicit Runge-Kutta (ASIRK) method is given by

ki = h
(

f(yn +

i−1
∑

j=1

bijkj) + g(yn +

i−1
∑

j=1

cijkj + aiki)
)

i = 1, . . . , s , (3.1)

yn+1 = yn +

s
∑

i=1

wiki . (3.2)

where ai, bij , cij and wj are the coefficients of the method. In [30], scheme (3.1)-
(3.2) is called ASIRK-sA method to distinguish it from other versions of ASIRK
schemes (ASIRK-sB and ASIRK-sC) based on Rosenbrock linearizations of Runge-
Kutta schemes. Although ASIRK-sB and ASIRK-sC methods require less compu-
tational effort, stability requirements for some problems make ASIRK-sA methods
necessary. Observe that in (3.1)-(3.2) the method is implicit in g and, consequently,
if g is nonlinear a nonlinear system must be solved.

It is straightforward to see that an ASIRK method (3.1)-(3.2) can be formulated
as

Kn+1 = h F (e ⊗ yn + (B ⊗ Ik)Kn+1) + h G(e ⊗ yn + (C ⊗ Ik)Kn+1) , (3.3)

yn+1 = yn + (wt ⊗ Ik)Kn+1 ,

where F and G are defined in an analogous way to the functions F and G in (1.3).
The matrices B and C, and the vector w characterize the ASIRK method. Observe
that matrix B is strictly lower triangular whereas matrix C is lower triangular. In this
way, the nonstiff term f is treated explicitly whereas a diagonally implicit method is
used for the stiff term g.

For example, in [30] the following 2-stage ASIRK-2A method

k1 = h
(

f(yn) + g(yn + a1k1)
)

, (3.4)

k2 = h
(

f(yn + b21k1) + g(yn + c21k1 + a2k2)
)

, (3.5)

yn+1 = yn + w1k1 + w2k2 . (3.6)

is considered; for this scheme matrices B and C in (3.3) are given by

B =

(

0 0
b21 0

)

, C =

(

a1 0
c21 a2

)

.

This method, formulated as (3.3), is also considered in [19].
For solving the nonlinear system (3.3) with an iterative nonlinear solver, predic-

tors for the internal derivatives Kn+1 are required. From our experience with Runge-
Kutta and additive Runge-Kutta schemes, we propose internal derivative predictors
of the form

K
(0)
n+1 = b0 ⊗ yn−1 + (B ⊗ Ik)Kn . (3.7)

The next step is to give conditions on vector b0 and matrix B in order to obtain a
high order predictor. We could develop a theory similar to the one in [7] by means of
Taylor expansions and rooted trees. However, instead of proceeding in this way, we

6 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

will rewrite the ASIRK method as an additive Runge-Kutta scheme, in such a way
that we can use the results obtained in [7].

As it has been pointed out above, formulation (3.3) corresponds to the use of
internal derivatives Kn+1. We propose another formulation in terms of the internal
stages Yn+1, Ŷn+1:

Yn+1 = e ⊗ yn + (B ⊗ Ik)
(

h F (Yn+1) + h G(Ŷn+1)
)

, (3.8)

Ŷn+1 = e ⊗ yn + (C ⊗ Ik)
(

h F (Yn+1) + h G(Ŷn+1)
)

, (3.9)

yn+1 = yn + h (wt ⊗ Ik)
(

F (Yn+1) + G(Ŷn+1)
)

. (3.10)

This scheme is obtained from (3.3) by denoting Kn+1 = h
(

F (Yn+1) + G(Ŷn+1)
)

.
Formulation (3.8)-(3.10) corresponds to a 2s-stage additive Runge-Kutta method (1.3)
with block matrices:

A =

(

B 0
C 0

)

, Â =

(

0 B
0 C

)

,

weight vectors bt = (wt, 0), b̂t = (0, wt), and stage value vector (Yn, Ŷn). Recall that
in this case, the 2s-stage additive Runge-Kutta method satisfies c = ĉ. For example,
the corresponding Butcher tableau for the ASIRK-2A method (3.4)-(3.6) written as
a 4-stage additive Runge-Kutta method is

0 0 0 0 0
b21 b21 0 0 0
a1 a1 0 0 0

c21 + a2 c21 a2 0 0
w1 w2 0 0

0 0 0 0 0
b21 0 0 b21 0
a1 0 0 a1 0

c21 + a2 0 0 c21 a2

0 0 w1 w2

Observe that, in general, with formulation (3.3) the nonlinear system to be solved
has dimension s · k, while in terms of the internal stages, the system (3.8)-(3.9) has
dimension 2 · s · k, and therefore from the dimension point of view, it is preferable to
solve (3.3). However this is not a drawback because this transformation is simply a
tool to use the known results.

Once we have an additive Runge-Kutta method, we can consider a stage value
predictor of the form (2.1)





Y
(0)
n+1

Ŷ
(0)
n+1



 = b0 ⊗ yn−1 + (B ⊗ Ik)





Yn

Ŷn



 , (3.11)

where

b0 =

(

b0

b̂0

)

and B =

(

B11 B12

B21 B22

)

.

In particular, for the implicit internal stages Ŷ
(0)
n+1, we have the predictor

Ŷ
(0)
n+1 = b̂0 ⊗ yn−1 + (B21 ⊗ Ik)Yn + (B22 ⊗ Ik)Ŷn . (3.12)

Observe that although we have written a predictor for the vector (Yn+1, Ŷn+1), the
component Yn+1 is obtained in an explicit way (see (3.8)) and consequently we do not

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 7

need to initialize it. Therefore we are only interested in conditions over the blocks
B21 and B22.

Once we have expressed the ASIRK-sA method as an additive Runge-Kutta
scheme, we can apply the theory developed in [7] summarized in Section 2. As c = ĉ,
we can use (2.2) to obtain the conditions that b0 and B should satisfy to obtain a
given order. If we use the blocks of matrix B, then the conditions up to order 2 are
given by:

Consistency:

„

b0

b̂0

«

+

„

B11 B12

B21 B22

«

e = e

Order 1:

„

B11 B12

B21 B22

« „

Be

Ce

«

= e + r

„

Be

Ce

«

Order 2:

„

B11 B12

B21 B22

« „

B 0
C 0

« „

Be

Ce

«

= eb
t

„

Be

Ce

«

+ r

„

B 0
C 0

« „

e + r

„

Be

Ce

««

„

B11 B12

B21 B22

« „

0 B

0 C

« „

Be

Ce

«

= eb̂
t

„

Be

Ce

«

+ r

„

0 B

0 C

« „

e + r

„

Be

Ce

««

From the second component, we easily obtain the set of order conditions for the

internal stage predictor Ŷ
(0)
n+1,

Consistency: b̂0 + B21e + B22e = e , (3.13)

Order 1: B21Be + B22Ce = e + rCe , (3.14)

Order 2: B21B2e + B22CBe = ewtBe + rC(e + rBe) , (3.15)

B21BCe + B22C2e = ewtCe + rC(e + rCe) , (3.16)

where we have used that for ASIRK-sA schemes bt = (wt, 0) and b̂t = (0, wt).
Remember that our aim is the study of predictors of the form (3.7). The next

step is to transfer the set of order conditions (3.13)-(3.16) for the stage value predictor

Ŷ
(0)
n+1 in (3.12), to a set of order conditions for the internal derivative predictor K

(0)
n+1

in (3.7). To obtain this goal, we begin by studying the relationship between b0 , B in
(3.7), and b0 , B in (3.11).

Proposition 3.1. We consider an internal derivative predictor of the form (3.7)
for the ASIRK method (3.3). Then the coefficients of the vector b0 and the matrix
B can be obtained in terms of the coefficients of the stage value predictor (3.12) as
follows:

b0 = C−1 (b̂0 + B21e + B22e − e) , B = C−1(B21B + B22C − ewt) . (3.17)

Proof. If we establish that Kn+1 = h
(

F (Yn+1)+ G(Ŷn+1)
)

, we can write (3.9) as

Ŷn+1 = e ⊗ yn + (C ⊗ Ik)Kn+1 ,

and since the matrix C is regular, we have

Kn+1 = (C−1 ⊗ Ik) (Ŷn+1 − e ⊗ yn) .

8 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

Hence, given the stage value predictor Ŷ
(0)
n+1, we define the internal derivative predictor

K
(0)
n+1 as

K
(0)
n+1 = (C−1 ⊗ Ik) (Ŷ

(0)
n+1 − e ⊗ yn) .

Equation (3.12) allows us to write

K
(0)
n+1 = (C−1 ⊗ Ik)

(

b̂0 ⊗ yn−1 + (B21 ⊗ Ik)Yn + (B22 ⊗ Ik)Ŷn − e ⊗ yn

)

.

From equations (3.8)-(3.10), we replace Yn, Ŷn and yn to obtain

K
(0)
n+1 = (C−1 ⊗ Ik)

(

b̂0 ⊗ yn−1 + (B21 ⊗ Ik)(e ⊗ yn−1 + (B ⊗ Ik)Kn)

+ (B22 ⊗ Ik)(e ⊗ yn−1 + (C ⊗ Ik)Kn)

− e ⊗ (yn−1 + (wt ⊗ Ik)Kn)
)

= (C−1 ⊗ Ik)
(

(b̂0 + B21e + B22e − e) ⊗ yn−1

+ ((B21B + B22C − ewt) ⊗ Ik)Kn

)

.

Hence we get a predictor of the form (3.7) with b0 and B defined by (3.17).

We are in a position to give the set of order conditions for the internal derivative
vector (3.7).

Proposition 3.2. The set of order conditions up to order 2 for predictor (3.7)
are

Consistency: b0 = 0 ,

Order 1: B e = r e , (3.18)

Order 2: BB e = r (e + rBe) , (3.19)

B C e = r (e + rCe) . (3.20)

Proof. From the consistency condition (3.13), the first equation in (3.17) remains
b0 = 0. Multiplying matrix B in equation (3.17) by e, Be and Ce and using (3.14),
(3.15) and (3.16) respectively, we obtain the order conditions (3.18)-(3.20) for predic-
tor (3.7).

The above result allows us to study and construct internal derivative predictors
for ASIRK methods.

Example 2. We consider the 2-stage ASIRK-2A method (3.4)-(3.6) from [30].
An analysis of this scheme gives that order 2 is not possible because (3.19)-(3.20)
cannot simultaneously be satisfied. If we impose the first order condition and the
second order condition (3.19), we obtain the matrix B given by

B = r
[

e | e + rBe
] [

e | Be
]

−1
= r





1 − 1
b21

1
b21

1 − 1
b21

− r 1
b21

+ r



 .

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 9

On the other hand, the first order condition and the second order condition (3.20)
gives

B = r
[

e | e + rCe
] [

e | Ce
]

−1
=





− r(−a2−c21+a1r+1)
−a1+a2+c21

− (a1(r−1)+1)r
a1−a2−c21

(a2(r−1)+c21(r−1)+1)r
a1−a2−c21

r(a1−a2r−c21r−1)
a1−a2−c21



 .

In both cases, we obtain a first order internal derivative predictor. In particular, if
we consider the set of parameters derived in [30] that give a second-order additive
semi-implicit Runge-Kutta method:

w1 =
1

2
, w2 =

1

2
, b21 = 1 , a1 =

1

4
, a2 =

1

3
, c21 =

5

12
,

we get

B =

(

0 r

−r2 r(1 + r)

)

and B =

(− 1
2r(r + 1) 1

2r(r + 3)

− 1
2r(3r + 1) 3

2r(r + 1)

)

respectively.

Example 3. We study and construct predictors for the ASIRK-3A scheme cons-
tructed in [30] and considered in [18]. For this method, the matrices B, C, and the
vector w are given by

B =





0 0 0
b21 0 0
b31 b32 0



 , C =





a1 0 0
c21 a2 0
c31 c32 a3



 , w =





w1

w2

w3



 ,

where

b21 = 8

7
, b31 = 71

252
, b32 = 7

36
,

c21 = 0.3067269871935408, c31 = 0.45 , c32 = −0.2631108321468882,

a1 = 0.4855612330925677, a2 = 0.9511295466999914, a3 = 0.1892078709825326,

w1 = 1

8
, w2 = 1

8
, w3 = 3

4
.

For this method it is possible to obtain an optimum predictor of order 2. According
to (3.18)-(3.20), it is given by

B = r
[

e | e + rBe | e + rCe
] [

e | Be | Ce
]

−1
=











b11 b12 b13

b21 b22 b23

b31 b32 b33











, (3.21)

10 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

where

b11 = (0.6567918590808737r− 0.09320814091911545)r ,

b12 = (0.4691370422006241r + 0.719137042200632)r ,

b13 = (0.374071098718483− 1.125928901281498r)r ,

b21 = (−0.34320814091912655r− 0.09320814091911545)r ,

b22 = (1.469137042200624r + 0.719137042200632)r ,

b23 = (0.374071098718483− 1.125928901281498r)r ,

b31 = (−0.34320814091912644r− 0.09320814091911545)r ,

b32 = (0.469137042200624r + 0.719137042200632)r ,

b33 = (0.3740710987184832− 0.1259289012814977r)r .

4. Numerical experiments. In this section we use the stage value predictors
constructed above. Our aim is to study the influence of the stage value predictors on
the computational efficiency when the LRR(3,2,2) and ASIRK-3A numerical schemes
are implemented.

4.1. Implementation of the solvers. We have used efficient mixed Fortran
and C implementations of both numerical schemes which use standard routines of the
BLAS linear algebra libraries [2] and a C implementation of the restarted generalized
minimum residual method (restarted GMRES) [25].

When the LRR(3,2,2) scheme (or the ASIRK-3A scheme) is applied to a system
of the form (1.1), a k-dimensional nonlinear system arises for each Runge-Kutta stage
and time step. These nonlinear systems are usually solved by the modified Newton
method. The i-th Newton iterative process (i = 1, . . . , s) of the n-th time step com-
putes an approximation to the internal stage vector Yn+1,i ∈ R

k (for the ASIRK-3A,
Yn+1,i would be the internal derivative Kn+1,i) by performing mn,i loops (mn,i is
determined using a particular stopping criterion). At the v-th loop of the Newton
process, a linear system with the form

Mn+1,i · ∆Y
(v−1)
n+1,i = R

(v−1)
n+1,i , v = 1, . . . , mn,i (4.1)

must be solved (see [18]), where the coefficient matrix Mn+1,i ∈ R
k×k depends on an

evaluation of the Jacobian of the function g (and exhibits the same structure) and

R
(v−1)
n+1,i is the residual vector of the v-th loop.

The coefficient matrix Mn+1,i of (4.1) is usually sparse. Since iterative me-
thods are particularly well-suited to deal with these types of coefficient matrices,
the restarted generalized minimum residual iterative method (restarted GMRES) [25]
with no preconditioning and 10 iterations before restarting (GMRES(10)) has been
implemented. As the test problems considered lead to sparse banded coefficient matri-
ces, we used an implementation of the GMRES(10) scheme which applies the banded
matrix-vector product by using a compact storage for banded matrices.

The Jacobian evaluation is performed once for each Runge-Kutta stage and before
the Newton iteration process while each Newton loop includes the iterative solution of

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 11

system (4.1). To determine the end of the Newton iteration process, we used a strategy
similar to that employed in [3, 4]. The user must provide the absolute and relative
tolerances atol and rtol, and the stopping criterion for the Newton iteration keeps
the local error of each component of the solution vector yn+1(l) (l = 1, ..., k) below
atol+rtol·yn+1(l). This strategy, assuming there is not convergence problems, depends

on the value of ∆Y
(v−1)
n+1,i obtained from solving the system (4.1) and is briefly shown

in the Algorithm 1. This algorithm describes the computations performed at the vth
loop of the i-th stage at the n-th integration step to compute the logical variable
convergence (initially false) which determines the number of Newton iterations mn,i.

In Algorithm 1, v is a global variable of the Newton solver which stores the number
of iterations. Therefore, if convergence is equal to true after executing the algorithm,
then v stores the total number of iterations mn,i. The parameter eps is the machine
precision (we used 10−16 in the experiments) and the norm ‖ · ‖scal, at the n-th time
step, is defined by

‖x‖scal =

√

√

√

√

1

k

k
∑

l=1

(

x(l)

atol + rtol · |yn(l)|

)2

, for all x ∈ R
k.

The variable α of Algorithm 1 is also a global variable of the Newton process
which stores an estimate of the convergence rate for the Newton scheme. At the v-th
Newton iteration, with v > 1, this variable is computed from the norm of the vectors

∆Y
(v−1)
n+1,i and ∆Y

(v−2)
n+1,i , obtained in the current and the previous loop of the Newton

method, respectively (see [4, 6] for more details). This variable is used to compute the
value of convergence in each Newton loop. When v = 1, a new value of convergence
can be also obtained if α was modified in the previous Runge-Kutta stage (in other
case, the value of convergence does not change and maintains the value false).

4.2. The test problems. The implementations of both schemes have been used
to integrate two different test problems which are briefly described below.
Problem 1. The first problem we have considered is the BRELAX problem from
[10, 17]. In this example we perform a time integration of a hydrodynamical model
of the Boltzmann equation for rarefied gases in 1D . This model is based on a system
of 5 PDEs which can be written in the following form,

(

Ut

Vt

)

=

(

−F 1(U)x − F 2(U, V)x

−G(U, V, Ux, Vx) + D(U, V, Ux, Vx)x

)

, (4.2)

where

U =

0

B

B

@

ρ

m = ρu

z =
1

2
ρu

2 +
3

2
p

1

C

C

A

, V =

„

σ

q

«

, F
1(U) =

0

B

B

B

@

ρu

ρu
2 + p

1

2
ρu

3 +
5

2
up

1

C

C

C

A

,

F
2(U, V) =

0

B

@

0

σ

σu + q

1

C

A
, D(U, V, Ux, Vx)x =

0

B

B

@

pω̂4

µω2

»

µ3θ

MRρ2

„

σ

µθ

«

x

–

x

pθ̂4

µθ2

»

µ3θ

ρ2

„

q

Rµθ2

«

x

–

x

1

C

C

A

,

G(U, V, Ux, Vx) =

0

B

B

@

uσx −
4

3
σux +

2p

ω2µ

„

σ +
4

3
µux − σ2 − σ3

«

uqx − qux +
3Mp

2θ2µ

„

q +
3

2
µMR θx − q2 − q3

«

1

C

C

A

.

12 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

Algorithm 1: Stopping Criterion for the modified Newton process, v-th loop
for the ith stage of the n-th time step

Result: convergence, α

if ‖∆Y
(v−1)
n+1,i ‖scal < 100 · eps · ‖yn‖scal then convergence = true;

else

if (v = 1) and (α is available from a previous stage) then

convergence =

(

‖∆Y
(v−1)
n+1,i ‖scal

α

1 − α
< 10−3

)

; α =
√

α ;

else if (v = 2) then

α =
‖∆Y

(1)
n+1,i‖scal

‖∆Y
(0)
n+1,i‖scal

;

convergence =

(

‖∆Y
(v−1)
n+1,i ‖scal

α

1 − α
< 0.03

)

;

else if (v > 2) then

α =

√

√

√

√α ·
‖∆Y

(v−1)
n+1,i ‖scal

‖∆Y
(v−2)
n+1,i ‖scal

;

convergence =

(

‖∆Y
(v−1)
n+1,i ‖scal

α

1 − α
< 0.03

)

;

end

if not convergence then v = v + 1;

were the terms σ2, σ3, q2 and q3 are defined in [17]. In this system, we have five inde-
pendent variables ρ (mass density), m = ρu (momentum, where u is the macroscopic
velocity), z = 1

2ρu2 + 3
2p (total energy, where p is the normal pressure), σ (pressure

deviation tensor) and q (heat flux vector). Here θ is the temperature (θ = p
Rρ) and µ

is the viscosity (here µ = θ). M denotes the Maxwell number (also called the Eucken
factor) which is a constant characteristic of a given gas (M = k(µcv)

−1, where k is
the heat conductivity of the gas and cv is the specific heat at constant volume) and
has an approximated value of 2.5 for most monatomic natural gases. R is the perfect
gas constant (R = 1). The symbols ω2, θ2, ω̂4 and θ̂4 denote coefficients of the relaxed
Burnett system (see [10, 17]) and have the following approximated values:

ω2 = 2, θ2 = 45/8, ω̂4 = 20, θ̂4 = 25.

A spatial discretization of this system is proposed in [17]. The physical space is
truncated to the finite region [0, 250] and we have subdivided this interval in N − 1
subintervals of length ∆x = 250

N−1 . The discretization is based on combining first order

upwind relaxation schemes [9] for the conservative part (F 1(U)x) and standard second
order central differences for the non conservative part (F 2(U, V)x, G(U, V, Ux, Vx) and
D(U, V, Ux, Vx)x).

The resulting system has 5N ODEs when the 1D space is discretized by using N
grid points. The stiff and nonstiff terms in (4.2) have the following form:

f(U, V) = (−F
1(U)x − F

2(U, V)x, 0)T
, g(U, V) = (0, D(U, V, Ux, Vx)x − G(U, V, Ux, Vx))T

.

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 13

If we maintain the same spatial discretization and arrangement which is proposed
in [17], the subsystem associated to g has a banded structure and the Jacobian of g

has 9 subdiagonals and 5 superdiagonals.
The initial vector y0 = y(0) of the differential system captures the state before

a one-dimensional shock profile with Mach number 10. The gas is initially at the
upstream equilibrium state in the left half-space and in the downstream equilibrium
state in the right-half space. The two states are smoothly connected with an hyper-
bolic tangent function (see [17]).

We performed the time integration from t = 0 through t = 10−3 by using 20 time
steps with fixed size h = 5 · 10−5. We performed experiments for different values of
the parameter N . For this problem, we used a relative error rtol = 10−16 and the
absolute error atol = 10−16 in order to stop the Newton process.
Problem 2. We refer to this second problem as the Diode problem. This problem was
introduced in [28] and describes the electron transport in a one-dimensional silicon
n+−n−n+ diode of length L = 0.6µm, where the interaction with the semiconductor
crystal is taken into account by an effective relaxation-time operator. The underlying
mathematical model is described in detail in [5] and can be written as:

∂f

∂t
= −F (x, v, t) + G(x, v, t), (4.3)

F (x, v, t) = v
∂f

∂x
− e

m
E

∂f

∂v
, G(x, v, t) =

1

τ(x, t)
[M(v)ρ(x, t) − f] ,

where f = f(x, v, t) is the scaled probability density function, x the spatial variable
(x ∈ [0, L]), t the time variable, v the velocity in phase space (v ∈ [−3.5, 3.5]), m the
effective electron mass, e the electron charge unit, and

M(v) =
1√
2πθ

e−v2/2θ, with θ =
kbT0

m
,

being kb the Boltzmann constant and T0 the lattice temperature (T0 = 300K).
The term ρ(x, t) is the electron concentration which can be obtained as follows:

ρ(x, t) =

∫

∞

−∞

f(x, v, t)dv. (4.4)

The term E is the electric field which can be obtained by solving the coupled
Potential Equation:

E(x, t) = −∂φ

∂x
, ǫ0

∂2φ

∂x2
= e(ρ(x, t) − C(x)), (4.5)

where ǫ0 is the dielectric constant, C(x) is the doping profile and the following boun-
dary conditions are used for the potential φ : φ(0, t) = 0 V , φ(L, t) = 0.7 V .

Here, the relaxation parameter τ(x, t) is given by:

τ(x, t) =
m

e

2µ0

1 +
√

1 + 4((µ0/vd)E)2
.

14 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

The initial conditions are given by f(x, v, 0) = M(v)C(x). The particular doping pro-
file C(x) for the device together with the value of the physical contants µ0, vd, kb, e, ǫ0
and m are given in [28].

In order to control spurious oscillations, the numerical simulation of this model
is based on the method of lines with high order non oscillatory finite differences
reconstructions of the derivatives of the density function f(x, v, t) [8]. In order to
guarantee the precision, the computational domain (directions x and v) is discretized
by taking an uniform mesh in each direction. We used a mesh with dimensions
(Nx + 1)× (Nv + 1) in the numerical resolutions. The points coordinates of the mesh
are calculated as we indicate below:

xi = i
L

Nx − 1
, i = 0, . . . , Nx, vj = −3.5 + j

7

Nv
, j = 0, . . . , Nv.

Numerically, we simulate the equation (4.3) using a conservative fifth order finite
difference Weighted Essentially Non Oscillatory (WENO5) scheme [8] to approximate
the derivatives of f in the term F (x, u, t) (see equation (4.3)). The value of the electric
field E at each grid point xi is computed by solving equation (4.5). To do that, we
have used central finite differences to approximate the derivatives and the value of φ
at each grid point is obtained by solving a tridiagonal linear system.

The concentration ρ is numerically evaluated at each grid point by using the
midpoint quadrature formula (see equation (4.4)).

In order to apply the WENO5 scheme, we use the following boundary conditions:
• For all i = 0, . . . , 3, j = 1, . . . , Nv − 1:

If vj > 0 then: f−i,j = 5 · 105 · M(vj), fNx+i,j = fNx−1,j ,

In other case: f−i,j = f1,j, fNx+i,j = 5 · 105 · M(vj).

• For all j = 0, . . . , 3, i = 1, . . . , Nx−1: fi,−j = fi,1, fi,Nv+j = fi,Nv−1.
As a result, we obtain a stiff semi-discrete system of (Nx−1)(Nv−1) ODEs, where

the term G must be treated implicitly. In order to perform the time integration using
an additive scheme, we write the ODE system in the following form:

∂fi,j

∂t
= f(fi,j) + g(fi,j), i = 1, . . . , Nx − 1, j = 1, . . . , Nv − 1, (4.6)

f(fi,j) = {−F}i,j , g(fi,j) = {G}i,j ,

where fi,j denotes f(xi, vj , t). To construct the system of ODEs, we have used the
following arrangement of variables:

f1,1, . . . , fNx−1,1, f1,2, . . . , fNx−1,2, , f1,Nv−1, . . . , fNx−1,Nv−1.

In this way, the Jacobian of g exhibits a banded structure with ⌈Nv/2⌉ subdiagonals
and ⌈Nv/2⌉ superdiagonals.

We performed experiments of time integration from t = 0 through t = 10−2 by
using 10 time steps with fixed size h = 10−3 for different values of Nx and Nv. For this
problem, we used a relative error rtol = 10−14 and the absolute error atol = 10−11 to
establish the stopping criterion of the Newton process.

4.3. Numerical results. The numerical experiments were performed on an
AMD Opteron processor 2.2Ghz, running Linux. We used the gnu fortran and C
compilers with the compiler choices recommended by AMD for scientific codes. We
also used versions of the BLAS library optimized for the AMD Opteron architecture.

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 15

Table 4.1

Results with LRR(3,2,2) scheme for the BRELAX problem

N Trivial Predictor Proposed Predictor
Nits TNewton Ttotal Nits TNewton Ttotal

200 3.00 0.3800 0.9561 2.05 0.2880 0.8201
400 3.00 0.7520 1.7881 2.05 0.5200 1.5441
800 3.00 1.6321 3.8682 2.05 1.0601 3.1402
1200 3.00 2.4882 5.8084 2.05 1.7401 5.0043
1400 3.00 2.7522 6.4244 2.05 2.0081 5.8844
1600 3.00 3.3402 7.7285 2.05 2.2841 6.7764
1800 3.00 3.7122 8.5605 2.05 2.4882 7.2205
2000 3.00 4.1003 9.5686 2.05 2.7842 8.0045
4000 3.00 9.1686 20.3613 2.05 6.1204 16.5850
5000 3.00 11.6047 25.4176 2.05 8.1205 21.1973

The evaluation of the Jacobian matrix of the function g at a point is approximated
by finite differences for both the BRELAX problem and the Diode problem.

To implement the ASIRK-3A scheme, we approximated the evaluation of the
Jacobian at each time step as it is done in [18]. In this way, it is only necessary to
perform one evaluation of the Jacobian for each time step.

As the aim of these numerical experiments is to show the influence of the predic-
tors on the computational efficiency of the code, we performed several implementations
of the LRR(3,2,2) and ASIRK-3A schemes using different stage value predictors, and
measured the average number of Newton iterations (Nits), the time taken to complete
the Newton iterations (TNewton) and the total execution time (Ttotal) (see Tables 4.1,
4.2, 4.3 and 4.4).

For the LRR(3,2,2) scheme, we compare the efficiency of the solver when the low
cost trivial predictor defined in (2.3) is used, with the case in which the second order
predictor of the form (2.5) with B defined by (2.6).

For the ASIRK-3A scheme, we compare the low cost trivial predictor defined as:

K
(0)
n+1 = e ⊗ Kn,3

with the predictor of the form (3.7) with b0 = 0 and the matrix B given by (3.21).
Tables 4.1 and 4.2 show the numerical results for the BRELAX problem with the

LRR(3,2,2) method and the ASIRK-3A schemes respectively. The time results which
appear in both Tables are graphically described in Figure 4.1 and a comparison of the
average number of Newton iterations obtained by using each predictor is illustrated in
Figure 4.3. It can be observed that for this problem, the use of the proposed predictor
allows us to reduce considerably the average number of iterations. The impact on the
total execution time is not too great because the Jacobian evaluation (obtained by
finite differences) are outside the Newton iteration and this computing phase is highly
significant in the overall execution time (for this particular problem). However, the
cost of the Jacobian evaluation could be reduced by computing it analytically or by
using the information known about the problem and consequently the impact of this
phase on the overall execution time would not have been so great.

The numerical results for the Diode problem are given in Tables 4.3 and 4.4.
The time results shown in both tables are graphically represented in Figure 4.2. It
can be observed that for the Diode problem, the reduction in Nits is greater than for

16 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

Table 4.2

Results with ASIRK3A scheme for the BRELAX problem

N Trivial Predictor Proposed Predictor
Nits TNewton Ttotal Nits TNewton Ttotal

200 3.00 0.4080 0.8841 1.00 0.1320 0.6200
400 3.00 0.8201 1.8081 1.12 0.3000 1.2761
800 3.00 1.6321 3.5802 1.12 0.6280 2.6842
1200 3.00 2.6002 5.7164 1.12 0.9401 3.8682
1400 3.00 3.0842 6.5644 1.12 1.0801 4.5683
1600 3.00 3.4002 7.4365 1.12 1.2561 5.1723
1800 3.00 3.8322 8.2245 1.12 1.4681 6.1044
2000 3.00 4.3043 9.2046 1.12 1.6401 6.7604
4000 3.17 10.1806 20.2893 1.00 3.3682 13.5848
5000 2.72 10.6127 22.8094 1.00 3.9642 16.1930

Fig. 4.1. Execution times for BRELAX solvers with different meshes

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000

T
im

e
(s

ec
o

n
d

s)

Number of grid points (N)

Ttotal-Trivial LRR(3,2,2)
Ttotal-Trivial ASIRK3A

Ttotal-Proposal LRR(3,2,2)
Total-Proposal ASIRK3A

Tnewton-Trivial LRR(3,2,2)
Tnewton-Trivial ASIRK3A

Tnewton-Proposal LRR(3,2,2)
Tnewton-Proposal ASIRK3A

the BRELAX problem and, since the Jacobian evaluation is relatively cheap in this
problem, the impact of the reduction on the overall execution time is very big.

Using the considered test problems, several numerical experiments were also per-
formed to show the effects of the method/predictor used on the accuracy of the nu-
merical results. The abovementioned values of rtol and atol for each problem have
been also used in these experiments.

For the BRELAX problem, we performed the time integration for the interval

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 17

Table 4.3

Results with LRR(3,2,2) scheme for the Diode problem

Nx × Nv Trivial Predictor Proposed Predictor
Nits TNewton Ttotal Nits TNewton Ttotal

50 × 50 3.93 0.3960 0.4280 3.07 0.2920 0.3200
50 × 100 4.50 2.4402 2.5522 1.67 0.9401 1.0241
75 × 100 4.70 4.1283 4.2803 1.47 1.2641 1.4281
100 × 150 4.47 10.3486 10.7887 1.53 3.5362 3.9682
125 × 150 4.67 13.5048 14.0569 1.47 4.2483 4.7883
150 × 150 4.60 15.9690 16.6330 1.33 4.6483 5.3043
150 × 200 4.93 30.2419 31.5580 1.43 8.6925 9.8646
175 × 175 4.83 26.8457 27.9137 1.43 7.9685 9.0086
175 × 200 4.70 33.3701 34.7702 1.33 9.5166 10.8727
200 × 200 4.67 37.9304 39.5345 1.33 10.8367 12.4688

Table 4.4

Results with ASIRK3A scheme for the Diode problem

Nx × Nv Trivial Predictor Proposed Predictor
Nits TNewton Ttotal Nits TNewton Ttotal

50 × 50 4.07 0.4000 0.4240 1.30 0.1440 0.1800
50 × 100 4.40 2.4442 2.5442 1.23 0.7121 0.8000
75 × 100 4.47 3.9602 4.0923 1.17 1.0401 1.1801
100 × 150 4.43 10.3806 10.8167 1.17 2.7402 3.1642
125 × 150 4.47 13.1168 13.6729 1.17 3.4482 3.9842
150 × 150 4.43 15.6970 16.3450 1.17 4.1243 4.7643
150 × 200 5.07 31.1339 32.2700 1.17 7.1764 8.3045
175 × 175 5.10 28.5818 29.6379 1.47 8.2365 9.2366
175 × 200 4.50 32.2820 33.6381 1.93 13.8649 15.1889
200 × 200 4.57 37.4863 39.0544 2.57 21.0493 22.6094

[0, 1.0] with N = 200 mesh points, using both solvers with different stage value pre-
dictors and 20000 time steps with fixed size h = 5 ·10−5. Figure 4.4 shows a graphical
representation of the mass density at t = 1.0.

For the Diode problem, we performed the time integration for the interval [0, 1.0],
with Nx = Nv = 150, using both solvers with different stage value predictors and
1000 time steps with fixed size h = 10−3. Figure 4.5 shows a graphical representation
of the electron density (ρ(x, t)) at t = 1.0.

In all the figures, the results given by all the solvers, are almost indistinguishable.
Therefore, these experiments do not reveal differences between the approximations
obtained with different starting algorithms despite of the solutions computed using
the proposed predictors are obtained in smaller runtimes.

5. Conclusions. In this paper we have studied predictors for additive Runge-
Kutta and ASIRK schemes. We have shown how to construct higher order predictors
without additional cost and which require very little implementation effort. The
numerical experiments carried out show that the use of good predictors can reduce
considerably the execution time of the Newton iterations and therefore the overall
execution time is diminished.

18 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

Fig. 4.2. Execution times for Diode solvers with different meshes

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5000 10000 15000 20000 25000 30000 35000 40000

T
im

e
(s

ec
o

n
d

s)

Number of grid points (Nx*Nv)

Ttotal-Trivial ASIRK3A
Ttotal-Trivial LRR(3,2,2)
Total-Proposal ASIRK3A

Ttotal-Proposal LRR(3,2,2)
Tnewton-Trivial ASIRK3A

Tnewton-Trivial LRR(3,2,2)
Tnewton-Proposal ASIRK3A

Tnewton-Proposal LRR(3,2,2)

Acknowledgements. J. Mantas acknowledges partial support from DGI-MEC
project MTM2008-06349-C03-03 and from project TIN2004-07672-C03-02. T. Roldán
and I. Higueras acknowledge support from DGI-MEC project MTM2005-03894.

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 19

Fig. 4.3. Average number of iterations for each solver when several predictors are used

 0

 1

 2

 3

 4

 5

BR-LRR BR-Asirk3A Diode-LRR(3,2,2) Diode-Asirk3A

A
ve

ra
ge

 N
um

be
r

of
 it

er
at

io
ns

Problem-Solver

Proposed Predictor
Trivial Predictor

Fig. 4.4. Numerical solution obtained with the BRELAX solvers for N = 200 and t = 1.0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250

ρ(
x,t

)

x

Mass density (t=1.0, N=200)

Trivial LRR(3,2,2)
Proposal LRR(3,2,2)

Trivial ASIRK3A
Proposal ASIRK3A

20 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

Fig. 4.5. Numerical solution obtained with the Diode solvers for Nx = 150, Nv = 150 and t = 1.0

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 0.1 0.2 0.3 0.4 0.5 0.6

ρ(
x,t

)

x

Electron Density (t=1.0, Nx=150, Nv=150)

Trivial LRR(3,2,2)
Proposal LRR(3,2,2)

Trivial ASIRK3A
Proposal ASIRK3A

DESIGN AND IMPLEMENTATION OF PREDICTORS FOR ASIRKs 21

REFERENCES

[1] U. M. Ascher, S. J. Ruuth and R. J. Spiteri, Implicit-Explicit Runge-Kutta for time-
dependent partial differential equations. Appl. Numer. Math., 25 (1997), pp. 151–167.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling and R. J. Hanson, An extended set of FOR-
TRAN basic linear algebra subroutines. ACM Trans. Math. Software, 14 (1988), pp. 1–17.

[3] Claus Bendtsen, Parallel Software for stiff ODEs. PhD thesis, 1996.
[4] Claus Bendtsen, ParSODES. A parallel Stiff ODE Solver. Version 1.0. User Guide (1996).
[5] C. Cercignani, I. Gamba, J. Jerome and C. W. Shu , Device benchmarks comparisons via

kinetic, hydrodynamic and high-field models. Comput. Methods Appl. Mech. Engrg., 181
(2000), pp. 381–392.

[6] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Springer, 1996.
[7] I. Higueras and T. Roldán, Stage value predictors for additive and partitioned Runge–Kutta

methods. Appl. Numer. Math. 56, 1 (2006), pp. 1–18.
[8] G. Jiang, and C.-W. Shu, Efficient Implementation of Weighted ENO Schemes. J. Comp.

Phys., 126, (1996), pp. 202-228.
[9] S. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary

space dimensions. Comm. on Pure and Appl. Math. 48 (1995), pp. 235–276
[10] S. Jin, L. Pareschi and M. Slemrod, A Relaxation Scheme for Solving the Boltzmann Equa-

tion Based on the Chapman-Enskog Expansion. Acta Math. Appl. Sin. Engl. Ser. 18 (2002),
pp. 37-62

[11] A. Kanevsky, M. H. Carpenter, D. Gottlieb and J. S. Hesthaven, Application of implicit-
explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes. J. Comput.
Phys. 225 (2007), pp. 1753–1781.

[12] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-
diffusion-reaction equations. Appl. Numer. Math. 44, 1-2 (2003), pp. 139–181.

[13] M. Laburta, Starting algorithms for IRK methods. J. Comput. Appl. Math. 83, (1997),
pp. 269–288.

[14] E. Lindblad, D.M. Valiev, B. Müller, J. Rantakokko, P. Lötstedt and M.A. Liberman,
Implicit-Explicit Runge-Kutta method for combustion simulation. ECCOMAS CFD, TU
Delft, The Netherlands, 5-8 September (2006).

[15] S.F. Liotta, V. Romano and G. Russo, Central schemes for balance laws of relaxation type.
SIAM J. Numer. Anal. 38, 4 (2000), pp. 1337–1356.

[16] J.M. Mantas, J. Ortega and J. Carrillo, Component-Based Derivation of a Stiff ODE
Solver implemented on a PC Cluster. Internat. J. Parallel Progr. 30 (2002), pp. 99-148.

[17] J. M. Mantas, L. Pareschi, J. Carrillo and J. Ortega, Parallel Integration of Hydro-
dynamical Approximations of the Boltzmann Equation for rarefied gases on a Cluster of
Computers. J. Comput. Methods Sci. Eng., 4 (2004), pp. 33-41.

[18] J. M. Mantas, P. Gonzalez and J. Carrillo, Parallelization of Implicit-Explicit Runge-
Kutta Methods for Cluster of PCs. Lecture Notes in Comput. Sci., 3648, (2005), 815–825.

[19] J. M. Mantas, Desarrollo Basado en Componentes de Resolutores de Ecuaciones Diferenciales
para Multicomputadores. PhD thesis, Universidad de Granada, Granada., 2003.

[20] L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes for stiff systems of differen-
tial equations. Recent Trends in Numerical Analysis, pp. 269–289, Adv. Theory Comput.
Math. 3, Nova Sci. Publ., Huntington, NY, 2001.

[21] L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta Schemes and Applications to Hy-
perbolic Systems with Relaxation. J. Sci. Comput., 25, 1 (2005), pp. 129–155.

[22] S. Pieraccini and G. Puppo, Implicit-Explicit Schemes for BGK Kinetic Equations. J. Sci.
Comput., 32, 1 (2007), pp. 1–28.

[23] T. Roldán, Implicit Runge–Kutta methods for DAEs: starting algorithms. PhD thesis, Uni-
versidad Pública de Navarra, 2000.

[24] T. Roldan and I. Higueras, IRK methods for DAE: starting algorithms. J. Comput. Appl.
Math., 111, 1 (1999), pp. 77–92.

[25] Y. Saad, Iterative Methods for Sparse Linear Systems. PWS Publishing Co., 1996.
[26] J. Sand, Methods for starting iterations schemes for implicit Ruge–Kutta formulae. De-

partment of Computer Science, University Copenhagen, Denmark (1989).
[27] M. Seäıd, Non-oscillatory relaxation methods for the shallow-water equations in one and two

space dimensions. Internat. J. Numer. Methods Fluids 46 (2004) pp. 457–484.
[28] J. A. Carrillo and F. Vecil, Non oscillatory interpolation methods applied to Vlasov models.

SIAM J. Sci. Comput., 29, 1 (2007), pp. 1179–1206.
[29] J.G. Verwer and B.P. Sommeijer, An Implicit-Explicit Runge–Kutta–Chebyshev Scheme for

Diffusion-Reaction Equations. SIAM J. Sci. Comput. 25 (2004), pp. 1824–1835.

22 I. HIGUERAS , J.M. MANTAS AND T. ROLDÁN

[30] X. Zhong, Additive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Nonequi-
librium Reactive Flows. J. Comput. Phys., 128, 1 (1996), pp. 19–31.

