
Noname manuscript No.
(will be inserted by the editor)

Simulation of one-layer shallow water systems on

multicore and CUDA architectures

Marc de la Asunción · José M. Mantas ·

Manuel J. Castro

Received: date / Accepted: date

Abstract The numerical solution of shallow water systems is useful for se-
veral applications related to geophysical flows but the big dimensions of the
domains suggests the use of powerful accelerators to obtain numerical results
in reasonable times. This paper addresses how to speed up the numerical solu-
tion of a first order well-balanced finite volume scheme for 2D one-layer shallow
water systems by using modern Graphics Processing Units (GPUs) support-
ing the NVIDIA CUDA programming model. An algorithm which exploits the
potential data parallelism of this method is presented and implemented using
the CUDA model in single and double floating point precision. Numerical ex-
periments show the high efficiency of this CUDA solver in comparison with a
CPU parallel implementation of the solver and with respect to a previously
existing GPU solver based on a shading language.

Keywords General Purpose computation on Graphics Processing Units
(GPGPU) · Shallow water systems · OpenMP · CUDA

1 Introduction

The shallow water equations, formulated under the form of a conservation law
with source terms, are widely used to model the flow of a layer of fluid under
the influence of gravity forces. The numerical solution of these models is useful
for several applications related to geophysical flows, such as the simulation of
rivers or dambreaks. These simulations impose great demands on computing

Marc de la Asunción and José M. Mantas
Depto. Lenguajes y Sistemas Informáticos. Universidad de Granada
E-mail: marc@correo.ugr.es, jmmantas@ugr.es

Manuel J. Castro
Depto. Análisis Matemático. Universidad de Málaga
E-mail: castro@anamat.cie.uma.es

2

power due to the dimensions of the domains (space and time), and very efficient
solvers are required to solve these problems in reasonable execution times.

Since the numerical solution of shallow water systems exhibits a lot of
exploitable parallelism, several works have dealt with the acceleration of these
simulations by using parallel hardware. An interesting numerical scheme to
simulate shallow water systems and an efficient parallel implementation of this
scheme for a PC cluster are presented in [1]. This parallel implementation has
been improved in [2] by using SSE-optimized software modules. Although these
improvements have made it possible to obtain results in faster computational
times, the simulations still require too much runtime.

Modern Graphics Processing Units (GPUs) offer hundreds of processing
units optimized for massively performing floating point operations in parallel
and can be a cost-effective way to obtain a substantially higher performance
in computationally intensive tasks (see [8] for a review of the topic).

There are previous proposals to port shallow water numerical solvers to
GPU platforms In [6], a explicit central-upwind scheme is implemented on
a NVIDIA GeForce 7800 GTX card to simulate the one-layer shallow water
system and a speedup from 15 to 30 is achieved with respect to a CPU im-
plementation. An efficient implementation of the numerical scheme presented
in [1] on GPUs is described in [7], obtaining two orders of magnitude speedup
on a NVIDIA Geforce 8800 Ultra card with respect to a monoprocessor im-
plementation. These previous proposals are based on the OpenGL graphics
application programming interface [9] and the Cg shading language [3].

Recently, NVIDIA has developed the CUDA programming toolkit [4] con-
sisting in an extension of the C language which facilitates the programming of
GPUs for general purpose applications by preventing the programmer to deal
with the graphics details of the GPU.

Our goal is to accelerate the numerical solution of shallow water systems
by using GPUs supporting CUDA. In particular, the one-layer shallow water
numerical solver which is parallelized in [1] and [7] has been adapted to the
CUDA architecture to obtain much better response times.

The next section describes the underlying numerical scheme. The sources of
parallelism and the CUDA implementation of the numerical solver is described
in Section 3. Section 4 presents and analyses the results obtained when the
solver is applied to several meshes using several GPUs. Finally, Section 5
summarizes the main conclusions and presents the lines for further work.

2 Numerical Scheme

The one-layer shallow water system is a system of conservation laws with
source terms which models the flow of a homogeneous fluid shallow layer that
occupies a bounded domain D ⊂ R

2 under the influence of a gravitational
acceleration g. The system has the following form:

3

∂W

∂t
+

∂F1

∂x
(W) +

∂F2

∂y
(W) =





0
gh

0





∂H

∂x
+





0
0
gh





∂H

∂y
, (1)

with

W =





h

qx

qy



 , F1(W) =











qx

q2
x

h
+

1

2
gh2

qxqy

h











, F2(W) =











qy

qxqy

h
q2
y

h
+

1

2
gh2











,

where h(x, y, t) ∈ R denotes the thickness of the water layer at point (x, y)
at time t, H(x, y) ∈ R is the depth function measured from a fixed level of
reference and q(x, y, t) = (qx(x, y, t), qy(x, y, t)) ∈ R

2 is the mass-flow of the
water layer at point (x, y) at time t.

To discretize System (1), the computational domain D is divided into L

cells or finite volumes Vi ⊂ R
2, which are assumed to be quadrangles. Given

a finite volume Vi, Ni ∈ R
2 is the centre of Vi, ℵi is the set of indexes j such

that Vj is a neighbour of Vi; Γij is the common edge of two neighbouring cells
Vi and Vj , and |Γij | is its length; ηij = (ηij,x, ηij,y) is the unit vector which is
normal to the edge Γij and points towards the cell Vj [1].

Assume that the approximations at time tn, Wn
i , have already been cal-

culated. To advance in time, with ∆tn being the time step, the following
numerical scheme is applied (see [1] for more details):

Wn+1

i = Wn
i −

∆tn

| Vi |

∑

j∈ℵi

| Γij | F−

ij , (2)

where |Vi| is the area of Vi and F−

ij ∈ R
3 is a vector whose computation involves

many linear algebra operations which depends on Wn
i and Wn

j (see [1]). To
compute the nth time step, the following condition can be used:

∆tn = min
i=1,...,L

{

[

∑

j∈ℵi
| Γij |‖ Dij ‖∞

2γ | Vi |

]−1
}

(3)

where γ, 0 < γ ≤ 1, is the CFL (Courant-Friedrichs-Lewy) parameter and
Dij ∈ R

3×3 is a diagonal matrix (see [1]).

3 CUDA Implementation

In this section, we describe the potential data parallelism of the numerical
scheme and its implementation in CUDA.

4

(a) Parallelism sources of the numerical
scheme

(b) General steps of the parallel algo-
rithm implemented in CUDA

Fig. 1: Parallel algorithm.

3.1 Parallelism sources

Fig. 1a shows a graphical description of the parallelism sources obtained from
the mathematical description of the numerical scheme. The main calculation
phases are identified with circled numbers, and each of them presents a high
degree of parallelism because the computation performed at each edge or vo-
lume is independent with respect to that performed at other edges or volumes.

Initially, the finite volume mesh is constructed from the input data. Then
the time stepping process is repeated until the final simulation time is reached:

1. Edge-based calculations. Two calculations must be performed for each
edge Γij connecting two cells Vi and Vj (i, j ∈ {1, . . . , L}):
a) Vector Mij = |Γij |F

−

ij ∈ R
3 must be computed as the contribution

of each edge to the calculation of the new states of its adjacent cells
Vi and Vj (see Equation (2)). This contribution must be added to the
partial sums Mi and Mj associated to Vi and Vj , respectively.

b) The value Zij = |Γij | ‖ Dij ‖∞ must be computed as the contribution
of each edge to the calculation of the local ∆t values of its adjacent
cells Vi and Vj (see Equation (3)). This contribution must be added to
the partial sums Zi and Zj associated to Vi and Vj , respectively.

2. Computation of the local ∆ti for each volume. For each volume Vi,
the local ∆ti is obtained as follows (see Equation (3)): ∆ti = 2γ |Vi|Z

−1

i .
3. Computation of ∆tn. The minimum of all the local ∆ti values previously

computed for each volume Vi is obtained.
4. Computation of Wn+1

i . The (n + 1)th state of each volume (Wn+1

i) is
calculated from the nth state and the data computed in previous phases.

5

Since the numerical scheme exhibits a high degree of potential data pa-
rallelism, it is a good candidate to be implemented on CUDA architectures.

3.2 Implementation details

We consider problems consisting in a bidimensional regular finite volume mesh.
The general steps of the algorithm are depicted in Fig. 1b. Each processing
step executed on the GPU is assigned to a CUDA kernel. A kernel is a function
executed on the GPU, which is executed forming a grid of thread blocks that
run logically in parallel (see [4] for more details). Next, we describe each step:

– Build data structure. For each volume, we store its state (h, qx and
qy) and its depth H . We define an array of float4 elements, where each
element represents a volume and contains the former parameters. This
array is stored as a 2D texture since each edge (thread) only needs the
data of its two adjacent volumes, and texture memory is especially suited
for each thread to access its closer environment in texture memory. The per-
block shared memory, on the other hand, is more suitable when each thread
needs to access many neighbouring elements located in global memory, and
each thread of a block loads a small part of these elements into shared
memory. We implemented both versions (using a 2D texture and using
shared memory) and we got better execution times using a texture.
The area of the volumes and the length of the vertical and horizontal edges
are precalculated and passed to the CUDA kernels that need them.
We can know at runtime if an edge or volume is a frontier or not and the
value of ηij of an edge by checking the position of the thread in the grid.

– Process vertical edges and process horizontal edges. We divide the
edge processing into vertical and horizontal edge processing. For vertical
edges, ηij,y = 0, and for horizontal edges, ηij,x = 0. Therefore, all the
operations where these terms take part can be avoided, increasing efficiency.
In vertical and horizontal edge processing, each thread represents a vertical
and horizontal edge, respectively, and computes the contribution to their
adjacent volumes as described in Section 3.1.
The edges (i.e. threads) synchronize each other when contributing to a
particular volume by means of two accumulators stored in global memory,
each one being an array of float4 elements. The size of each accumulator is
the number of volumes. Each element of the accumulators stores the edge
contributions to the volume (a 3 × 1 vector Mi and a float value Zi).
Then, in the processing of vertical edges, each edge writes the contribution
to its right volume in the first accumulator, and the contribution to its left
volume in the second accumulator. Next, the processing of horizontal edges
is performed in an analogous way with the difference that the contribution
is added to the accumulators. Fig. 2 shows this process graphically.

– Compute ∆ti for each volume. In this step, each thread represents a
volume and computes the local ∆ti of the volume Vi as described in Section

6

(a) Vertical edge processing (b) Horizontal edge processing

Fig. 2: Computing the sum of the contributions of the edges of each volume.

3.1. The final Zi value is obtained by summing the two float values stored
in the positions corresponding to the volume Vi in both accumulators.

– Get minimum ∆t. This step finds the minimum of the local ∆ti of the
volumes by applying a reduction algorithm on the GPU. The reduction
algorithm applied is the kernel 7 (the most optimized one) of the reduction
sample included in the CUDA Software Development Kit [4].

– Compute Wn+1

i for each volume. In this step, each thread represents a
volume and updates the state Wi of the volume Vi as described in Section
3.1. The final Mi value is obtained by summing the two 3×1 vectors stored
in the positions corresponding to the volume Vi in both accumulators. Since
a CUDA kernel cannot write directly into textures, the texture is initially
updated by writing the results into a temporary array and then this array
is copied to the CUDA array bound to the texture.

We have also implemented a version of this CUDA algorithm using double
precision. The differences with respect to the implementation described above
are that two arrays of double2 elements are used for storing the volume data,
and four accumulators of double2 elements are used.

4 Experimental Results

We consider a circular dambreak problem in the [−5, 5]× [−5, 5] domain. The

depth function is H(x, y) = 1 − 0.4 e−x2
−y2

and the initial condition is:

W 0
i (x, y) =





h0(x, y)
0
0



 , where h0(x, y) =

{

2 if
√

x2 + y2 > 0.6
4 otherwise

The numerical scheme is run for different mesh sizes. Simulation is carried
out in the time interval [0,1]. CFL parameter is γ = 0.9, and wall boundary
conditions (q · η = 0) are considered.

We also have implemented a serial and a quadcore CPU version (using
OpenMP [10]) of the CUDA algorithm. Both versions are implemented in
C++, and the Eigen library [5] is used for operating with matrices. We also

7

Table 1: Execution times in seconds for all the meshes and programs.

CPU CPU GTX 260 GTX 280
Volumes 1 core 4 cores Cg CUSP CUDP Cg CUSP CUDP

100 × 100 0.7 0.2 0.11 0.02 0.07 0.08 0.01 0.06
200 × 200 5.4 1.5 0.26 0.07 0.37 0.20 0.06 0.36
400 × 400 44.6 13.9 0.84 0.40 2.75 0.68 0.36 2.63
800 × 800 358.7 112.3 4.42 2.92 21.45 3.75 2.66 20.81

1600 × 1600 2883.5 898.1 30.72 23.49 167.5 26.14 21.22 161.4
2000 × 2000 5639.6 1755.6 58.54 44.97 335.6 49.48 39.83 307.3
2700 × 2700 13902.4 4340.0 – 111.9 819.7 – 96.63 755.2
3200 × 3200 23290.0 7240.0 – 184.9 – – 163.4 –

have compared the CUDA implementations with the Cg program described in
[7]. We have used the double data type in CPU.

All the programs were executed on a Core i7 920 with 4 GB RAM. Graph-
ics cards used were a GeForce GTX 260 and a GeForce GTX 280. Table 1
shows the execution times in seconds for all the meshes and programs (some
cases could not be executed due to insufficient memory errors). As can be seen,
the number of volumes and the execution times scale with a different factor
because the number of time steps required for the same time interval also aug-
ments when the number of cells is increased (see Equation (3)). The execution
times of the single precision CUDA program (CUSP) outperform that of Cg
in all cases with both graphics cards. Using a GTX 280, CUSP achieves a
speedup of more than 140 with respect to the monocore version. The double
precision CUDA program (CUDP) has been about 7 times slower than CUSP
for big problems in both graphics cards. As expected, the OpenMP version only
reaches a speedup less than four with respect to the monocore program. Fig. 3
shows graphically the GB/s and GFLOPS obtained in the CUDA implementa-
tions with both graphics cards. In the GTX 280 card, CUSP achieves 61 GB/s
and 123 GFLOPS for big meshes. Theoretical maximums are: for the GTX
280, 141.7 GB/s, and 933.1 GFLOPS in single precision, or 77.8 GFLOPS in
double precision; for the GTX 260, 111.9 GB/s, and 804.8 GFLOPS in single
precision, or 67.1 GFLOPS in double precision.

We also have compared the numerical solutions obtained in the monocore
and the CUDA programs. The L1 norm of the difference between the solutions
obtained in CPU and GPU at time t = 1.0 for all meshes was calculated. The
order of magnitude of the L1 norm using CUSP vary between 10−2 and 10−4,
while that of obtained using CUDP vary between 10−13 and 10−14, which
reflects the different accuracy of the numerical solutions computed on the
GPU using single and double precision.

5 Conclusions and further work

An efficient first order well-balanced finite volume solver for one-layer shallow
water systems has been derived and implemented using the CUDA frame-
work. This solver implements optimization techniques to parallelize efficiently

8

(a) GB/s (b) GFLOPS

Fig. 3: GB/s and GFLOPS obtained with the CUDA implementations in all meshes with
both graphics cards.

the numerical scheme on the CUDA architecture. Simulations carried out on
a GeForce GTX 280 card using single precision reached 61 GB/s and 123
GFLOPS, and were found to be up to two orders of magnitude faster than a
monocore version of the solver for big-size uniform problems, and also faster
than a GPU version based on a graphics-specific language. These simulations
also show that the numerical solutions obtained with the solver are accurate
enough for practical applications, obtaining better accuracy using double pre-
cision than using single precision. As further work, we propose to extend the
strategy to enable efficient simulations on irregular meshes and to address the
simulation of two-layer shallow water systems.

Acknowledgements J. Mantas acknowledges partial support from the DGI-MEC project
TIN2007-29664-E and the DGI-MEC project MTM2008-06349-C03-03. M. Castro acknow-
ledges partial support from DGI-MEC project MTM2006-08075.

References

1. Castro MJ, Garćıa-Rodŕıguez JA, González-Vida JM, Parés C (2006) A parallel 2d fi-
nite volume scheme for solving systems of balance laws with nonconservative products:
Application to shallow flows. Comput Meth Appl Mech Eng 195:2788-2815.

2. Castro MJ, Garćıa-Rodŕıguez JA, González-Vida JM, Parés C (2008) Solving shallow-
water systems in 2D domains using Finite Volume methods and multimedia SSE instruc-
tions. J Comput Appl Math 221:16-32.

3. Fernando R, Kilgard MJ (2003) The Cg Tutorial: The Definitive Guide to Programmable
Real-Time Graphics. Addison-Wesley.

4. NVIDIA. CUDA Zone. http://www.nvidia.com/object/cuda home.html. Accessed
November 2009.

5. Eigen 2.0.9. http://eigen.tuxfamily.org. Accessed November 2009.
6. Hagen TR, Hjelmervik JM, Lie K-A, Natvig JR, Henriksen MO (2005) Visual simulation

of shallow-water waves. Simul Model Pract Theory 13:716-726.
7. Lastra M, Mantas JM, Ureña C, Castro MJ, Garćıa JA (2009) Simulation of Shallow-

Water systems using Graphics Processing Units. Math Comput Simul 80:598-618.
8. Rumpf M, Strzodka R (2006) Graphics Processor Units: New Prospects for Parallel Com-

puting. Lecture Notes in Computational Science and Engineering 51:89-132.

9

9. Shreiner D, Woo M, Neider J, Davis T (2007) OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 2.1, Addison-Wesley Professional.

10. Chapman B, Jost G, van der Pas R (2007) Using OpenMP: Portable Shared Memory
Parallel Programming, The MIT Press.

