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Abstract 

We propose a classification of temporal properties 
into a hierarchy. The classes of the hierarchy are char- 
acterized through four views: a language-theoretic 
view, a topologica1 view, the temporal logic view, and 
an automata view. In the topological view, the con- 
sidered hierarchy coincides with the two lower lev- 
els of the Bore1 hierarchy, starting with the closed 
and open sets. For properties that are expressible by 
temporal logic and predicate automata, we provide 
a syntactic characterization of the formulae and au- 
tomata that specify properties in the different classes. 
We relate this classification to the well known safety- 
[iweness classification, and show that in some sense 
the two are orthogonal to one another. 

1 Introduction 

This paper deals with some methodological aspects 
of the development of correct reactive systems. Fieac- 
tive systems are systems (and programs) whose main 
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role is to maintain an ongoing interaction with their 
environment, rather than to produce some final re- 
sult on termination. Such systems should be specified 
and analyzed in terms of their behaviors, i.e., the se- 
quences of states or events they generate during their 
operation. The class of reactive systems includes prG 
grams such as operating systems, programs control- 
ling industrial plants, embedded systems, and many 
others. It is clear that it includes also the classes of 
concurrent and distributed programs since, indepen- 
dently of the goal and purpose of the complete sys- 
tem, each component of the system has to be studied 
in terms of the interaction it maintains with the other 
components. 

A reactive program may be viewed as a generator 
of computations which, for simplicity, we may assume 
to be infinite sequences of states or events. In the 
case that the program does terminate, we may always 
extend the finite computation it has generated by an 
infinite sequence of duplicate states or dummy events 
to obtain an infinite computation. 

In general, we define a property as a set of compu- 
tations. A program P is said to have the property 
II if all the computations of P belong to II. Sev- 
eral languages and formalisms have been proposed 
for expressing properties of programs, including the 
language of temporal logic [Pnu77, Lam831 and the 
formalism of predicate automata [AS89, MP87]. 

An important approach to the specification and 
verification of reactive systems is based on specifying 
a program by listing several properties, representing 
requirements that the program ought to satisfy. This 
approach enjoys the advantages of abstraction and 
modularity. By abstraction we mean that since the 
specifier lists separate properties and is not required 
to show how they can be integrated or worry about 
how they interact with one another, he is not tempted 
to overspecify or actually design, the system. Conse- 
quently, this approach leads to specifications which 
are considerably free of implementation bias. 
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By modularity we mean that a property-list based 
specification is very easy to modify by dropping, 
adding or modifying a single property. Also, the pro- 
cess of verifying that a proposed implementation sat- 
isfies its specification can be done in a modular fash- 
ion, by verifying each property separately. 

One of the major drawbacks of the property based 
approach to specification is that, while it discourage 
overspecification, it may in some cases lead to un- 
derspecification. Thus, a constant concern in working 
with such specifications is that of completeness: Have 
we specified enough properties to guarantee that any 
implementation will be close enough to our intuitive 
intent? 

A classical example of underspecification is a spec- 
ification for a mutual exclusion algorithm that spec- 
ifies the obvious requirement that no two processes 
reside in their critical sections at the same time, but 
forgets to require that each interested process will 
eventually get access to its critical section. A trivial 
but obviously unsatisfactory implementation of this 
faulty specification is one in which no process ever 
gets to the critical section. 

A partial remedy to the completeness problem can 
be provided by a deeper study and detailed cIassifica 
tion of the different types of properties. This can at 
least provide the specifier with a check list of proper- 
ties that he should consider. For each of the proper- 
ties types he can ask himself the questions: Is there 
a property of this type that is relevant to the system 
I am specifying? Have I already specified it? 

A useful and important partition of properties into 
the classes of safety and heness properties has been 
suggested by Lamport in [Lam77]. The two classes 
have been informally characterized as: 

l A safety property states that some bad thing 
never happens. 

l A liveness property states that some good thing 
eventually happens. 

An important advantage of this classification is that 
each class encompasses properties of similar char- 
acter. Safety properties typically represent require- 
ments that should be continuously maintained by the 
system. They often express invariance properties of 
the system. For example, if the bad thing represents 
violation of a mutual exclusion requirement, then the 
statement that it never happens ensures that mutual 
exclusion is continuously maintained. Liveness prop- 
erties, on the other hand, typically represent require- 
ments that need not hold continuously, but whose 
eventual (or repeated) realization must be guaran- 
teed. For example, if the good thing represents the 

situation that a process enters its critical section, then 
the statement that it eventually happens guarantees 
the absence of a livelock (or individual starvation). 

Thus, we can immediately identify the fault with 
the incomplete specification considered above as miss- 
ing the appropriate liveness property. With the addi- 
tion of this property, the specification becomes com- 
plete, and admits only satisfactory solutions. 

To draw an analogue from terminating programs, 
safety properties correspond to partial correctness, 
which does not guarantee termination but only that 
all terminating computations produce correct results. 
Liveness properties correspond to total correctness 
which also guarantees termination. For reactive sys- 
tems, which may never terminate, the spectrum of 
relevant and useful liveness properties is much richer 
than the single property of termination. For exam- 
ple, it also includes the guarantee that a certain event 
occurs infinitely many times. 

While it is generally recognized that a complete 
specification of a system should include both a safety 
and a liveness part, there is an additional cost in a 
language that can express both classes of properties. 
For example, if we are ready to restrict ourselves to 
expressing only safety properties, then the relatively 
simpler language of predicates over finite behaviors 
(or finite prefixes of infinite behaviors) suffices. The 
only justification for using temporal logic or equiva 
lent formalisms, which are considerably more complex 
since they define predicates over infinite behaviors, 
is for expressing liveness properties. Thus a major 
justification for studying the classification of proper- 
ties is to identify the tradeoff between completeness 
and expressibility of the specification language and 
its complexity. 

Another reason for wishing to distinguish between 
the two classes is that their verification calls for dif- 
ferent proof approaches. To prove safety properties 
one uses essentially compuialional induction (using 
the terminology of [Man74]), based on an invariance 
principle. According to this principle, to establish a 
safety or an invariance property, we show that it holds 
initially and that it is preserved by each individual 
action of the program. Consequently, based on an in- 
duction argument on the position in the computation, 
it follows that the property always holds. Note that 
the inductive argument appears only in the justifica- 
tion of the proof principle, but not in its application. 
That is, the user of the principle only establishes the 
two facts mentioned above, i.e., initial validity and 
preservation over the program steps. Thus the in- 
duction is implicit. 

Liveness properties, on the other hand, are proven 
using structural induction, i.e., explicit induction on 
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some function of the state, that measures the distance 
away from the realization of the “good thing”. This 
induction is often represented as an application of a 
well-founded argument. We refer the reader to [OL82, 
MP84] for a discussion of the unique proof principles 
associated with each class. 

A more formal definition of the semantic nature of 
safety properties has been given in [Lam83], and a 
semantic characterization of liveness properties has 
been given in [AS85]. These two formal definitions 
lead to the following pleasing consequences: 

l The classes of safety and liveness properties are 
disjoint (except for the trivial properties of the 
empty sets and set of all computations). 

l Every property can be represented as the inter- 
section of a safety property and a liveness prop- 
erty. 

l The classes contain the obvious properties that 
are intuitively associated with them, i.e., invari- 
ance and partial correctness in the safety class, 
and termination and absence of individual star- 
vation in the liveness class. 

l All the properties classified as safety proper- 
ties can be proven using an invariance principle, 
while the properties classified as liveness proper- 
ties can be proven using a well-founded principle. 

Alpern and Schneider (see [AS89, AS87j) studied this 
classification in terms of predicate automata, a topic 
we will cover in a later subsection. They provided 
syntactic characterization of the two classes by impos- 
ing structural constraints on the automata describing 
such properties. 

Unfortunately, the situation is somewhat less sat- 
isfactory when we try to give a syntactic characteri- 
zation of these two classes in terms of the temporal 
logic formulae expressing them. Sistla gave in [Sis85] 
a syntactic characterization of the safety cla.ss. He 
also gave some characterizations of some subclasses 
of the liveness class, which however do not cover the 
full class. 

In this paper we present an alternative classifica- 
tion of properties, to which we refer as the Bore/ 
classification. The name is justified by the corre- 
spondence we show between this classification and 
the lower two levels of the classical Bore1 topologi- 
cal hierarchy. 

The Bore1 classification agrees with the safety- 
liveness (SL) classification on the identification of the 
class of safety properties. It differs from the SL clas- 
sification on the other classes. Unlike the SL clas- 
sification, the Bore1 classification is a hierarchy and 

not a partition. This means that some non-safety 
classes properly contain the class of safety proper- 
ties. The situation is similar in that respect to the 
hierarchy of formal languages where, for example, the 
class of context-free languages properly contains the 
class of regular languages. We have to designate a 
language as strictly context-free in order to identify 
it as context-free but not,regular. 

It is possible to argue that the main advantages 
attributed above to the safety-liveness classification, 
namely, the need for more complex specification lan- 
guage and different proof principle for the liveness 
class, are due to the distinction between the safety 
and the non-safety classes, The Bore1 classification 
also makes such a distinction, but in addition pro- 
vides a finer classification of the non-safety classes. 
This classification enables us to distinguish between 
properties stating that a certain good thing occurs at 
least once, and properties stating that a certain good 
thing occurs infinitely many times in the computa- 
tions. 

We examine the Bore1 classification from four 
points of view. The first view is linguistic (language 
theoretic), where we characterize the different classes 
according to the way they can be constructed from 
languages of finite sequences. The second view is 
topological, where we characterize the classes as sets 
with particular topological properties. This is where 
we establish the correspondence with the Bore1 topo- 
logical hierarchy. Next, we consider properties which 
are expressible in temporal logic, and give for each 
class a syntactic characterization of the formulae that 
express properties belonging to that class. Finally, we 
consider the expression of properties by predicate au- 
tomata, and give syntactic characterization of the au- 
tomata describing properties belonging to each class. 
We show that these four views of the hierarchy co- 
incide. In the last section dealing with the program 
part of the proof system, we will indicate some unique 
proof principles that correspond to particular classes. 

A hierarchy, very similar to the one considered 
here, has been studied extensiveiy in the context of 
automata over infinite words, which is the fourth view 
we consider. The properties of the lower ranks of the 
hierarchy, which are our main subject of interest, have 
been established by Landweber in [Lan69]. The com- 
plete hierarchy has been analyzed in [Wag79], and 
several years later in [Kam85]. They have also es- 
tablished the connection to the topological charac- 
terization. Consequently, many of the technical re- 
sults described in the section on automata have been 
established in these two works. The similar results 
about temporal logic can usually be derived from the 
automata results by restriction to non-counting au- 
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tomata ([ZucSS]). 
Parts of this paper have appeared in other places. 

Some of the main results have been presented in 
PODC87, but the proceedings of that year contains 
only an abstract. Other parts have appeared in 
[MP89a]. 

2 The Linguistic View 

In this paper we take an abstract view of the states 
that a program may assume, the computations that 
a program may generate, and of the properties that 
programs may possess. We consider a fixed set of 
states C, with no assumptions about their internal 
structure. Computations will correspond to infinite 
sequences of states. Obviously, a property is a pred- 
icafe on such sequences. It judges some sequences 
to be acceptable (having the property) and other se- 
quences as unacceptable (not having the property). 
Thus, each property uniquely defines a characteris- 
tic set of sequences which are precisely the sequences 
that have the property. 

This leads to a most abstract view of a property as 
a set of infinite sequences. We denote by C’ the set 
of all finite sequences of states in C, and by C+ the 
set of all non-empty finite sequences of states. Let Cw 
denote the set of all infinite sequences of states, and 
c M = C+ U C” the set of all non-empty finite and 
infinite sequences of states. 

As suggested above, we view a property as any 
set of sequences. Another name for such a set is a 
language over the alphabet C. In formal language 
theory, it is customarily required that the alphabet 
be finite. However, the extension to infinite alpha- 
bets is straightforward. We will therefore consider 
the terms property and language to be synonymous. 
Consistently with this terminology, we will refer to 
sequences as words. 

Consider, for example C for a particular program to 
consist of states assigning integer values to the vari- 
able z. Let II be the property requiring that 

The value of z is monotonically increasing. 

Then the property defines a characteristic set, which 
we also denote by II, such that the sequence 

(3 : 0),(x: 2),(2: 3),... 

belongs to II, while the sequence 

(x : 0),(x: 2),(2: l),... 

does not. 
We introduce the following special cases of proper- 

ties. A set Q C_ C+ of non-empty finite words is called 

a finitary property. A set II c Cw of infinite words 
is called an infinitary property. Clearly, our ultimate 
interest is in the infinitary properties, as all compu- 
tations are infinite sequences of states. However, the 
theory of infinitary properties makes extensive use of 
finitary properties as the building blocks from which 
infinitary properties are constructed. 

For a finite word Q E C+ and a word u’ E Coo, we 
denote by u 4 u’ the fact that (I is a proper finite 
prefix of CT’, i.e., a prefix that differs from u’. We 
denote by (T 3 a’ the more general relation (a 4 
a’) V (u = Q’ E C+) , still requiring Q to be finite. 
The word u .u’ is obtained by concatenating u’ to the 
end of cr. It is defined only if u is finite. 

For a property II E C”, we denote by Pref(II) 
the set of all finite prefixes of II. 

We define the complements of a finitary property @ 
and of an infinitary property II, denoted respectively 
by q,n, as 

&c+-+, iT=cw--HI. 

The classification of properties in the linguistic 
view is based on the following question: How can 
we construct infinitary properties fromfinitary ones? 
The underlying assumption is that fmitary propert ie~ 
are easy to understand and handle, but we want 1.2 
study carefully the construction of infinitary proper- 
ties. 

We propose four operators for the construction of 
infinitary properties form finite ones. They are de- 
noted by A, E, R, and P, respectively. We present 
below the definition of the properties that are ob- 
tained by applying the operators to a given finitary 
property a. We will illustrate these definitions on 
simple cases, which are described by the notation of 
regular expressions, extended by the notation +” that 
denotes the infinite product of the language a. Thus, 
the language a“’ consists of all the infinite words that 
can be presented as the infinite concatenation 

uo ’ Ul * II72 - * . , 

where each ui is a finite non-empty word belonging 
to a. 

l The property A(Q) consists of all the infinite 
words cr, such that 

All prefixes of u belong to a. 

For example, if Cp = a+b*, then A(O) = uw + 
a+bw. 

l The property E(a) consists of all the infinite 
words u, such that 
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There ezi&s a prefix of u that belongs to a. 

For example, E(u+b*) = a+b* . Y’. In fact, it is 
true for every finitary property Cp that E(a) = 
ip*c”. 

l The property R(Q) consists of all the infinite 
words u, such that 

Infinile/y many prefixes of o belong to Cp. 

For example, R(C*b) = (C*b)W. This language 
contains all the words that have infinitely many 
occurrences of b. 

l The property P(Q) consists of all the infinite 
words u, such that 

All but finitely naany prefixes of Q belong to 0. 

For example, P(C’b) = C’b”. This language 
contains all the words that from a certain point 
on contain only occurrences of b. 

The reason for denoting the two last operators by the 
letters R and P is that prefixes belonging to Q occur 
recurrently in R(O), and persistently (from a certain 
point on) in P(a). 

For some of the developments below, it is useful to 
define the finitary versions of the operators A and E. 
Let @ be a finitary property. we define 

l Af (0) is the set of all finite words cr, such that 

All prefixes of u are in @. 

l Ef(+) is the set of all finite words b, such that 

There e&is a prefix of u that belongs to a. 

To illustrate the difference between the operators 
A, E and their finitary versions, consider the following 
examples 

A,(a+b*) = a+b* A(a+b*) = uw + a+bw 
E,(a+b*) = u+b* . C* E(u+b*) = a+b* . C” 

The four operators are not completely independent. 
In fact A and E are dual operators, and so are R and 
P. 

The meaning of duality between A and E is that 
they satisfy the equalities 

A(@) = E(q) and ??@) = A(s). 

where complementation is taken with respect to C+ 
for 0, and with respect to Cw for A(@) and E(Q). 

Similar duality relations hold for the finitary ver- 
sions of these operators. 

Af w = Em and EJ (@) = AJ (5). 

Let us show, for example, that the equality A(@) = 
E@) holds. Clearly u E A(*) iff all prefixes of (T 
belong to 0. Consequently u 6 A(@) iff there exists 
at least one prefix of (r, call it u’, that does not belong 
to a. This means that u has a prefix, namely u’, that 
belongs to 3, which is true iff u E E(T). 

The duality between R and P is given by the equal- 
ities 

R(Q) = P@) and P(Q) = R@). 

Based on these four operators we define four basic 
classes of infinitary properties. 
An infinitary property II is defined to be 

A safety property if Il = A(+) for some finitary 
a. That is, all prefixes of a word u E II belong 
to 0. 

A guarantee property if II = E(a) for some fini- 
tary a. That is, each word u f II is guaranteed 
to have some prefix belonging to i9. 

A Pecurrence property if II = R(Q) for some fini- 
tary 0. That is, each word u E II has recurrently 
(infinitely many times) prefixes belonging to a. 

A persistence property if II = P(a) for some 
finitary a. That is, each word u E II has per- 
sistently (continuously from a certain point on) 
prefixes belonging to (9. 

We apologize to our readers for the frequent changes 
in the names we give to the classes (compare, for 
example, with the names appearing in [MP89b]). 
At least the definitions and characterization of the 
classes remain the same. 

It follows, for example, that the properties (I“’ + 
a+b“‘,a+b* . lF’,(C*b)“, and C*b”, are safety, guar- 
antee, recurrence, and persistence properties, respec- 
tively. 

If we interpret the “good” and “bad” things that 
are mentioned in Lamport’s informal definition as sit- 
uations or occurrences that can be detected in finite 
time, then they must correspond to finitary proper- 
ties. Consequently, we can view the four classes de- 
fined above as making different claims about the fre- 
quency of occurrences of “good” things. According to 
this interpretation, safety, guarantee, recurrence, and 
persistence claim, respectively, that a “good” thing 
occurs always, at least once, infinitely many times, or 
continuously from a certain point on. 
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Duality of the Classes 

A direct consequence of the duality between the oper- 
ators A and E, and between the operators R and P, 
is a 
can 

0 

corresponding duality between the classes. This 
be expressed by 

II is a safety property iff i7 is a guarantee prop- 
erty. 

II is a recurrence property ifT n is a persistence 
property. 

Closure of the Classes 

Next, we show that each of the four basic classes is 
closed under the positive boolean operations, namely, 
union and intersection. We will consider each class in 
turn. 

Closure of the Guarantee Class 

Let E(01) and E(&) be two guarantee properties. 
We wish to show that their union is also a guarantee 
property. This is based on the equality 

E(@I) u E(Q2) = E(@I u @2), 

which appears even more convincing when we write 
@a E“’ for E(a). In this representation, the equality 
above assumes the form 

Next, consider the case of intersection. Here, we 
base our argument on the equality 

which can easily be verified. Expressing this equality 
in terms of the operators E and Et, we obtain 

E(‘h) n E(*2) = E(Ej(*d n Q(Q2)). 

This shows that the intersection of two guarantee 
properties can be expressed the application of the op- 
erator E to the finitary property Ej (@I) 13 Ef(Gz). It 
follows that the intersection is also a guarantee prop- 
erty. 

Closure of the Safety Class 

The closure of the safety class under intersection and 
union is established by the following two equalities, 
that can be derived by duality from corresponding 
equalities for the guarantee class. 

4%) II A(Q2) = 4% II a,) 

4%) u -4(@2) = A(A/(%) u 4(@2)). 

Closure of the Recurrence Class 

We consider first the simpler case of union. It is not 
difficult to see that 

R(%) u R(&) = R(<P1 u Cpz). 

This equality states the obvious fact that a word 
u contains either infinitely many al-prefixes or in- 
finitely many @z-prefixes iff u contains infinitely 
many 01 U &-prefixes. 

For the more difficult case of intersection, we intro- 
duce the following definition. 

Let 01 and a2 be two finitary properties. We de- 
fine the minimal ezlension of a2 over 01, denoted by 
minez(iP1, Q2), to be the set of words cr2 E Q2, such 
that 

There exists a word ~1 E $1, such that ~1 + u2, 
i.e., 62 is a proper @-extension of ul, ana 

There is no 6: E & such that ~1 + us 4 ~2, i.e., 
o2 is a minimal proper Q2-extension of ul. 

Clearly, minez(Ql, cPz> E Q2, and is therefore a fini- 
tary property. 

As an example, let @I = (a”)+ and a2 = (a”)+. 
Then minez(al,Qz) is equal to (&)*a2 + (a6)*u4. 
On the other hand, 
(a6)*2 = a,. 

minez((a2)+, (a”)+) = (06)+ + 

Now we can express the effect of intersecting two 
recurrence properties as 

R(@l) n R(49) = R(minez(%, %)). 

We show inclusion in the two directions. Consider 
an infinite word u E R(@I) rl R(iP2). Let ud -X u: + 
u; 4 . - - be the sequence of al-prefixes in u. For each 
i=O,l,... let a: be the shorted &prefix of u that 
properly contains u’. CIearly, uf E minez(cP1, Q2) 
and there are infinitely many of them. It follows that, 
u E R(minez(iP~,cP2)). 

In the other direction, assume that u E 
R(miner(Q1, a~)). Let u$ -X uf 4 ui 4 . . . be 
the sequence of minez(+l , &)-prefixes in u. Clearly, 
by the definition of miner, each of them belongs 
also to &, which shows that u E R(Qi2). For each 
i = 0, 1,. . ., let ui be the longest proper al-prefix of 
uz. Fromthe definition of minimal extension is fol- 
lows that, for each i = 0, 1, . . ., a? is the minimal 
On-extension of ul. Obviously, ug 5 u: -< ui 5 . . . 
but it remains to show that the containment is strict. 
Assume it is not, and let uj’ = u;+~ for some j. Then 
we have the relations 
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These show that a;+1 is not the minimal proper @z- 
extension of c$+,, contrary to the definition of ajl. It 
follows that the sequence 6: 4 cri 4 ci 4 . . . contains 
infinitely many distinct elements, and therefore cr E 
R(W 

Closure of the Persistence Class 

Here we utilize duality to derive the following equal- 
ities which show the closure of the persistence class 
under intersection and 

P(@lg l-l P(%> 

P(@l) u P(W 

union. 

Characterization of the Classes 

Our definition of the classes is constructive. This 
means that we have shown how each of the classes 
can be constructed by applying the operators A, E, 
R, and P to finitary properties. In some cases this 
definition is not easy to apply directly. Consider, for 
example, the question: How do you show that the 
property (u + ,)*b, is not a safety property? Going 
back to the constructive definition, we have to show 
that there cannot exist a finitary property @, such 
that (u + ,)*b“ = A,(+). On the face of it, this does 
not seem to be an easy task. 

It is therefore very helpful to derive some additional 
characterization for some of the properties, which 
are independent of the constructive definition. We 
present such characterization for the lower classes of 
safety and recurrence. 

Claim 

An infinitary property Il is a safety property 
iff 

H = A(Pref(n)). 

Consider first the if direction. Clearly, Pref(II) is a 
finitary property, and therefore, if II = A(Pref(II)) 
then, by the constructive definition II is a safety prop- 
erty. 

Next, consider the only if direction. It is easy to 
see that II 2 A(Pref(KI)), since for any word c E II, 
all the prefixes of c belong to Pref(II). 

By the assumption that II is a safety property it can 
be presented as II = A(Q) for some finitary a. By the 
definition of the A operator it follows that Pref(II) & 
a. Applying the operator A, which can be shown 
to be monotonic, to both sides of this inclusion, we 
obtain A(Pref(ll)) C A(@) = Il. This establishes 
the other direction of the equality. 

We may now use the characterization claim to show 
that (~*b)~ is not a safety property. A simple calcu- 
lation yields Pref((a*b)“‘) = (u+b)+, from which we 

get 

A(Pref((u*b)w)) = 

A@ + v+) = (a+ by # (u*lJy. 

We refer to the operator A(Pref(II)), applied to an 
arbitrary property II, as the safety closure of II. Thus 
the claim above can be reformulated by saying that 
an infinitary property II is a safety property iff lI 
equals its safety closure. 

By duality we can immediately obtain a character- 
ization of the guarantee class. 

Claim 

An infinitary property If is a guarantee 
property iff 

II = E(Pref@)). 

Note that the complement of II should be taken with 
respect to C”, while the complement of Pref(n) 
should be taken with respect to C+. 

Inclusion among the Classes 

Another interesting relation among the classes is that 
of inclusion, which arranges the classes of properties 
in a hierarchy. The two classes of recurrence and 
persistence properties are higher’up in the hierarchy 
in the sense that they properly contain the classes of 
safety and guarantee. 

Recurrence contains Safety and Guarantee 

To show containment of the safety class in the recur- 
rence class, we have to show that any safety property 
II = A(@) can be presented as a recurrence prop- 
erty, i.e., as the application of the operator R to some 
finitary property. This is easily accomplished by the 
equality 

This equality states that all prefixes of u are in @ iff 
u has infinitely many prefixes u’, such that all the 
prefixes of u’ are in a. 

To show that the containment is strict it suffices 
to consider the property ( a*b)w, which consists of all 
words whose states are either a or b, but have an 
infinite number of b’s. It is easily seen that (a*b)” 
is a recurrence property, as it can be presented as 
R((u*b)+). On the other hand, as shown above, this 
property is not a safety property. 
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TO show that any guarantee property, presentable 
asrI = E(a), is also a recurrence property, we use 
the equality 

E(a) = NJWW * 

It is easy to agree to the equality once we represent 
the operators E in their equivalent form 

0 - cw = (@ ’ c*> * C”. 

To show that the inclusion is strict, we use again the 
property (a’b)” that has already been shown to be 
a recurrence property. It only remains to show it is 
not a guarantee property, using the appropriate char- 
acterization claim. For simplicity, we assume that 
c = {c&b}. 

E(m) = E(Pref((a + b)*&)) 

= E(m) = E(4) = q5 # (a’b)? 

Persistence contains Safety and Guarantee 

By duality, we can use the previous results to show 
that any safety and guarantee properties are pre- 
sentable as persistence properties. The equalities on 
which these presentations are based are 

A(+) = P(AfW) 

EC@) = %w@9). 

To show the strictness of the containment we may 
use the property complementing the property used 
before. This is the property (a + b)*&. It is easy to 
present it as a persistence property by the expression 
P((a + b)*a+). On the other hand, using the charac- 
terization claims for the safety and guarantee classes, 
it can easily been shown that this property belongs 
to neither of these classes. 

The Compound Classes 

The four classes we have introduced are considered 
to be the basic classes. As we have seen, each of 
the basic classes is closed with respect to the positive 
boolean operations of union and intersection, but tak- 
ing the complement moves us from each class to its 
dual (safety f-, guarantee.and recurrence w persis- 
tence). 

There are two additional classes, to which we refer 
as the compound classes, that can be obtained by 
taking unrestricted boolean combinations of the basic 
classes. 

The Obligation Class. 

This class can be defined by three equivalent 
statements as the class obtainable by 

= Unrestricted boolean combinations of safety 
properties, or 

n Unrestricted boolean combinations of guar- 
antee properties, or 

n Positive boolean combinations of safety and 
guarantee properties. 

The Reactivity Class. 

This class can be defined as the class obtainable 
by unrestricted boolean combination of either re- 
currence properties alone, or persistence proper- 
ties alone. Alternately, all properties of the reac- 
tivity class can be obtained by positive boolean 
combinations of both recurrence and persistence. 

The definitions above display an obvious tradeoff be- 
tween using unrestricted boolean combinatSions of a 
single class or using positive boolean combinations of 
a ciass and its dual. 

A typical obligation property is given by the ex- 
pression a* bw + C* . c. C” which represents a union of 
the safety property a*bw and the guarantee property 
c*.c.cw. 

We will study some of the properties of the obliga- 
tion class. 

The Obligation Class 

The obligation class obviously contains both the 
safety and guarantee class. By examining the prop- 
erty a* b” + C’ . c. C” we see that this containment is 
strict since this property is neither a safety property 
nor a guarantee property. 

To justify the name given to this class, consider the 
property defined by 

II : A(s) u E(Q). 

Each word u belonging to this property, either has 
all of its prefixes taken from i or has at least one 
prefix taken from Q’. Consequently, if c has a prefix 
belonging to @ it must also have a prefix belonging to 
q. Thus, this property represents a conditional obli- 
gation that the word will contain a q-prefix if it con- 
tains G-prefix. In comparison, the guarantee property 
E(Q) represents an unconditional guarantee that the 
word will contain a Q-prefix. The more general prop- 
erty ni(A(c) U E(9i)) represent the multiple obli- 
gation to have a XI?;-prefix for every i for which the 
word contains a @i-prefix. 
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The obligation class is obviously closed under all 
three boolean operations. Using the third version 
of the definition, we can use the distributive rule 
to bring any boolean combination into a conjunctive 
normal form 

n 

m . 
nt,u... . . urI;-,uII~u.. * u G-& 

i=l 

where II!, . . . , I$.., are safety properties, and 
r$,...,II~-l are guarantee properties. Using now 
the closure of the safety and guarantee classes under 
union, we can replace the union II; U . . . U 11~-1 by a 
single safety property II’,, and the union I$ U . m - U 

l-r’ m--l by a single guarantee property II&. It follows 
that any obligation property can be represented as 
the intersection 

h (A(%) u E(%)), 
i=l 

for some n > 0, and Unitary properties 
al, 91,. . . , a,,, Q,. We refer to this presentation as 
the conjunctive normal form of obligation properties. 

In a completely symmetric way we can present each 
obligation property in a disjunctive normal form 

I,) (A(Qi) II E(Qi)). 
is1 

For most of our applications we will mainly use the 
conjunctive normal form. 

Any of these forms introduces an internal strict hi- 
erarchy within the class of obligation properties. We 
define the subclass Oblk, for k = 1,. , ., to consist of 
all the properties that have a conjunctive normal form 
representation with n = k. It is not difficult to see 
that Oblk E Oblk+l. This is due to the fact that we 
can always add the trivial conjunct A@+) U E(C+) 
to a conjunction of k terms and transform it into a 
conjunction of k f 1 terms. 

Less obvious is the fact that this is a strict hierar- 
chy. To present a canonical example that establishes 
this fact we introduce the following definitions. For 
a property III, that may contain both finite and infi- 
nite words, and a property IIZ, we define the product 
II1 .II2 to consist of all the infinite words of 111 and all 
the words glV ~72 for a finite ~1 E II, and any u2 E II2. 

Let C = {a,b,c,d}. DefineII = a”+(a+b)*-c-P’. 
Then the property 

[(II + a*)alk-l . l-I, 

for k > 0, belongs to 0611, but to no lower Oblk,, 
k’ < k. 

A similar hierarchy can be defined based on a 
disjunctive, rather than a conjunctive normal form. 
Note that in both hierarchies, the safety and guar- 
antee properties belong to the lowest subclass Obll, 
to which we refer as the subclass of simple obligation 
properties. 

The last property of the obligation class we wish to 
discuss is its strict containment in both the recurrence 
and persistence classes. observe that the definition of 
obligation properties as a positive boolean combina 
tion of safety and recurrence properties can be recast 
into an inductive definition as follows. 

l Every safety property is an obligation property. 

l Every guarantee property is an obligation prop- 
erty. 

l If II, and & are obligation properties, then so 
are II1 U II2 and IIt 17 n2. 

Based on this definition, it is easy to prove by induc- 
tion that every obligation property is a recurrence 
property. This is because every safety property and 
every guarantee property are recurrence properties, 
and the union and intersection of recurrence proper- 
ties are, again, recurrence properties. To show that 
containment is strict, we may use again the property 
b*QW, which is a recurrence property bu.t can be 
shown not to be an obligation property. 

An identical argument shows that the obligation 
class is contained in the persistence class. The prop- 
erty (Q + b)*cP, which is a persistence property, but 
can be shown not to be an obligation property, shows 
that containment is strict. 

It can also be shown that the obligation class is 
precisely the intersection of the recurrence and persis- 
tence classes, i.e., it contains all those properties that 
are each both a recurrence and a persistence property. 

The Reactivity Class 

There is a very close analogy between the way the 
obligation class is constructed by boolean combina- 
tions of safety and guarantee properties, and the way 
the reactivity class is constructed by boolean com- 
binations of recurrence and persistence properties. 
We can therefore transliterate all the properties es- 
tablished for the obligation class into corresponding 
properties of the reactivity class. 

Every reactivity property is presentable in a con- 
junctive normal form 

fi(R(@i)U P(@i)), 

i=l 
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for some n > 0, and finitary properties 
@l, Ql, * * f ,%a, a,. 

Similarly, every reactivity property is presentable 
in a disjunctive normal form 

for some n > 0. 
These two presentations support two infinite strict 

hierarchies of reactivity properties. 
A reactivity property that is presentable in a con- 

junctive normal form with n = 1 is called a simple 
reactivity property. 

The class of reactivity properties is closed under all 
the three boolean operations. 

Consider a simple reactivity property II = R(Q) U 

P(m). Obviously a word IT belongs to II if either it has 
infinitely many q-prefixes, or all of its prefixes, from 
a certain point on, do not belong to Cp. Consequently, 
if u contains infinitely many Q-prefixes it must also 
contain infinitely many g-prefixes. Thus, we may 
view the Q-prefixes as a reaction to having infinitely 
many @-prefixes. A more general property of the form 

n,(wi> U~(~>>, can be viewed as a multiple reac- 
tion promising infinitely many @;-prefixes for every i 
such that c contains infinitely many @i-prefixes. In 
Figure 1, we present a diagram that displays the six 
classes we have discussed and the containment relax 
tions holding between them. 

Expression by a First Order Language 

The properties A(Q), E(a), R(a) and P(@) can be 
logically characterized as follows. Let C be the 
language consisting of individual variables u, u’, . . ., 
unary relations (set symbols) a,, \zr,. . ., and the bi- 
nary relation 4. Consider properties defined by first- 
order formulae of the form X(u), with a free variable 
u, interpreted in the obvious way. 

For each 0 E {A, E, R, P), the property (3(a) can 
be defined by 

where 

x$(u) : Vu’ 4 u . @(a’) 

x;(u) : 37’ 4 u. qu’) 

x;(u) : Vu’ 4 CT. W’(U 4 u” 4 a). <p(u”) 

x$(u) : 30’ 4 u. Vu”(U’ 4 u” 4 a). aqu”) 

Reactivity 

A3 : ni[fq@i> u P(R)] 

Gso n Ft,a 

A\i[“oPi V VOqi] 

(F) (-) 

Figure 1: Inclusion Relations between the Classes 

Thus, it is justified to denote the (class of 
sequences-sets satisfying) property A(Q) by the no- 

tation IIf, the property E(Q) by x?, the prop- 

erty R(Q) by @, and the property P(Q) by @. 
We omit the superscript ip when referring to the gen- 
eral properties over arbitrary sets @. The compound 
properties of obligation and reactivity can now be de- 
noted by A2 = II, n X2 and A3 respectively. 

The Safety-Liveness Classification 

As we have already mentioned, there exists another 
classification that partitions the set of all properties 
into two disjoint classes, the class of safety and the 
class of liweness (see [Lam83, AS85]). 

The definition of the safety class is the one we have 
used before, or equivalently, the characterization of 
an infinitary property as being a safety property if it 
satisfies 

II = A(Pref(II)). 
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An infinitary property II is defined as being a liveness 
property if every finite word cr E II+ is a prefix of a 
word in If, i.e., Pref(lI) = C+. 

Observe that the definition implies that liveness 
properties are upwards closed. This means that if 
II is a liveness property, then so is any II’ > If. 

One of the important aspects of the safety-liveness 
classification is that it provides an exhaustive parti- 
tion of the class of all properties. Consider the prop- 
erty a+bIY, whose temporal logic expression is aZ4b. 
This property is certainly not a safety property as it 
does not equal its safety closure, which is aw U a*bC“’ 
or a U b (using the unless operator U). Clearly, the 
property aUb can be represented as the conjunction 
of the two properties a U b and Ob. We can view a U b 
as representing the safety component of the property, 
claiming at any point that we have not lost yet the 
chance of realizing aUb. 

The property Ob, which can be represented by the 
w-regular expression C’ . b. C” , is obviously a liveness 
formula (as seen by Pref(C* . b . I?‘) = C+), and it 
can be viewed as the most distilled non-safety part 
of the property aUb that does not impose any safety 
constraints. 

Clearly the classes of safety and liveness are dis- 
joint, except for the trivial property C” (T in tempe 
ral logic). Thus, the important fact about the safety- 
liveness classification is the following 

Claim 

Every property If can be represented as the 
intersection 

n = n, n l-IL, 

where Ifs is a safety property and IIL is a 
liveness property. 

To prove this claim we take IIs to be the safety clo- 
sure of II, IIs = A(Pref(II)). For IIL we take the 
fiveness extension of II, defined by 

&Q-I) = II u E(Pref0). 

Thus, L(II) consists of all the words of ll plus all the 
words that have at least one prefix that cannot be 
extended to a word of II. Since for every finitary a, 
Pref(E(O)) C a, we can compute 

Pref(L(II)) = Pref(II) U Pref(E(Pref0)) 

C Pref(II) U Pref(II) = C+. 

This shows that L(H) is a liveness property. Next, 
we show that II = IIs n IIL. We use the definitions of 

IIs and ff~ and the distribution of intersection over 
union to get 

rls n n, = 

[A(Pref(ll)) n E(m)] 

Since every property is contained in its safety clo- 
sure, it follows that II E A(Pref(II)), and hence 

A(Pref(II)) nII = II. The equality A(ib)nE@) = q5 
is true for every finitary property Cp, in particular for 
ip = Pref(lI), which leads to the fact that the second 
intersection is empty. This shows that 

rls n rrL = n. 

We can identify within the liveness class the same hi- 
erarchy we have previously introduced. Let K stand 
for the name of any of the five non-safety classes, i.e., 
guarantee, obligation, recurrence, persistence, or re- 
activity. We define a property to be a live n-property 
if it is a liveness property that also belongs to the K 
class. 

An interesting observation is that if II is a property 
of class K, then its liveness extension L(II) is a live K- 
property. This is because L(If) is formed by the union 
of II with the guarantee property E(m), and 
all the non-safety classes are closed under unions with 
guarantee properties. It follows that 

any property II of the non-safety class K is 
representable as the intersection 

where IIs is a safety property and IIL is a 
live K-property. 

This observation shows that in some sense the Bore1 
and the safety-liveness classifications are orthogonal 
to one another. 

A special case of liveness properties is the class of 
uniform liveness property. A property II is defined 
to be a uniform liveness property if there exists a 
single infinite word u’ E I?‘, such that C+ . u’ C II. 
That is, for every arbitrary rr E C+, c7. u’ E II. Note, 
in comparison, that liveness only requires that for 
every cr E C+, there exists some u’ E C”, such that 
U-U’ E II, while uniform liveness insists that the same 
u’ extends any finite word to a II-word. 

As an example of a property that is a liveness prop- 
erty but not a uniform liveness, consider an alphabet 
C = {a,b). Thepropertya.C*-aa.P+b.C*.bb.P 
requires that the state that appears first in the word 
appears sometimes later, twice in succession, Let u be 
any word. If u begins in an u-state, then the proper 

387 



extension is ~7’ = oo.Ew. If u begins in a b-state, then 
the proper extension is (T’ = bb . C”. Clearly, there 
does not exist a uniform extension u’ that applies to 
all words 0 E E+ . 

3 The Topological View 

In this section we characterize the different classes in 
the hierarchy by their topological properties. We will 
show that the classes of properties in our hierarchy 
correspond precisely to the lower two (and a half) 
levels of the Bore1 topological hierarchy. 

First, let us define the appropriate topological no- 
tions. For a word u, we denote by ~[i], i = 0,. . . , the 
i’th element (state) of u, counting from 0. For ex- 
ample, if u = 0, 1,2, . . . , then a[i] = i. Also, for any 
n>O,ifa= an+lbw, then u[n] = a and a[n+ l] = b. 

We define the distance between two infinite words 
u and u to be 0 if they are identical, and 

p(u,u’) = 2-j 

otherwise, where j 2 0 is the minimal index on which 
they differ, i.e., such that ub] # u’[j]. Equivalently, 
j is the length of the longest prefix on which they 
agree. There is nothing magic about this particular 
function of j. Any other function of j that tends to 
zero as j tends to infinity will do equally well. 

For example, for every tz > 0, p(a”bw,a2nb“‘) = 
2 -n, since the longest prefix on which these two words 
agree is a” of length n. 

It is not difficult to see that the distance function 
p has all the properties required from a metric, and 
that with this metric, the set Cw becomes a complete 
metric space. 

Following the standard definitions, we say that an 
infinite sequence of words (each of which is an infinite 
sequence of states) 

converges to the limit Q, if the distance p(u,uh) tends 
to 0 as k goes to infinity. In other words, the length 
of the maximal prefix common to u and to u) grows 
to infinity together with k. 

For a given integer L > 0, we say that the words 
u and u’ share a prefix longer than L, if there exists 
a finite word 6, which is a prefix of both u and u’, 
and whose length exceeds L. With this notion we can 
reformulate the definition ,of the sequence us, ur , . . . 
converging to u if for every L > 0 there exists an 
index k, such that u and uk share a prefix longer than 
L. The advantage of this version of the definition is 
that it does not depend explicitly on the particular 
distance function p. 

Consider, for example, the sequence of words 
b”, abw, uabw, aaab”, . . . . It is not difficult to see that 
this sequence converges to the limit ~6”. This is be- 
cause the sequence of longest prefixes common to aw 
and to (Tk = a”: b”, which is a’, gets increasingly 
longer with k. 

Given a set U E C”, we define the word u E E” 
to be a limit point of the set U, if there exists an 
infinite sequence of words uc, ul, (~2, . . . , all of which 
belong to U, that converges to u. Clearly, any u E U 
is a limit point of U, since the sequence u, u,u,. . . 
converges to u. 

We define the (topological) closure of U, denoted 
by cl(U), to be the set of all limit points of U. Ob- 
viously, U C cl(U). For example, the closure of the 
set a+b” is given by cl(a+b”) = a+b” + ow, which 
consists of the original set plus the limit word &. 

We define a set U to be closed if it contains all 
its limit points, i.e., cl(U) c U, which immediately 
yields cl(U) = U. Thus, a+bw + aw is a closed set, 
while a+&“ is not. 

We proceed to consider each of the classes of prop- 
erties we have introduced above, and give it a topo- 
logical characterization. We will start with the four 
basic classes. 

The Safety Properties are the Closed 
sets 

To show the correspondent between the safety prop- 
erties and closed sets, we prove the following general 
identity that hold for any set II C C” 

cl@) = AtprefW)- 

Let us denote @ = Pref(lI). The set 0 is of course 
prefix closed, which means that if a E @ and u’ 4 u, 
then also u’ E 3. 

Let u E cl(n). This means that there exists an 
infinite sequence uo, ~1, . . . of words in II, whose limit 
is u. Let b 4 u be an arbitrary prefix of u. By the 
definition of a sequence converging to a limit, there 
must exists some k 1 0, such that u and uk share a 
common prefix u’ which is longer than 8. It follows 
that & 4 6’ 4 Uk, and therefore B E Pref(II). The 
case that 61: = d is similar. Thus, any prefix of u is 
in Pref(B), and therefore u E A(Pref(II)). 

In the other direction, let u E A(Pref(II)). For 
each k > 0, let &k denote the prefix of u of length k. 
By the assumption, each &k belongs to Pref(II), and 
therefore there exists a bk E B, such that 6.k 4 uk. 
We claim that the sequence ~1, ~2, . . . converges to u. 
This is because for any length L it is sufficient to take 
k > L to obtain a member of the sequence, namely 
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(Tk, which shares with cr at least the prefix &, whose 
length exceeds L. Thus, (T is a limit point of II. II 

Having established the equivalence of the operators 
cl(l’I) and A(Pref(II)), it easy to conclude that 

Il is a safety property iff II = A(Pref(II)) 
iff II = d(II) iff II is a closed set. 

The closure of the class of closed sets with respect 
to finite unions and intersections is a known topo- 
logical fact, and corresponds to the similar closure 
properties we have established in the linguistic view. 
In the inclusion diagram we represent the topological 
characterization of this class by the letter F, which 
usually designate the class of closed sets. 

The Guarantee Properties are the Open 
sets 

Following the standard topological definitions, a set 
II is defined to be open in our topology if for every u 
belonging to II, there exists an L > 0, such that any 
other word u’, sharing with CT a prefix longer than L, 
is also in II. Thus, a complete environment of all the 
words that are close enough to cr is fully contained in 
II. It is not difficult to see that II is an open set iff W 
(the complement with respect to Cw) is closed. Thus 
the families of closed an open sets are dual. 

We can use this duality, and the previously estab- 
lished equivalence between safety properties and the 
family of closed sets to establish the equivalence be- 
tween guarantee properties and the family of open 
sets as follows: 

II is a guarantee property iff ‘E) is a safety 
property iff n is a closed set iff II is an open 
set. 

However, it may be instructive to present an inde- 
pendent proof of the latter equivalence. 

Let Il = E(Q) b e a guarantee property. Let u E II 
be any word in II. By definition, tr has a finite prefix 
B + u which belongs to a. Assume its length to be 
L > 0. Then we claim that all infinite words which 
share with (T a prefix longer than L are also in II. Let 
u’ be such an infinite word. Since u and u’ share a 
prefix longer than L, u’ must also have B as a prefix. 
Consequently, u’ E II. 

In the other direction, Let II be an open set. Take 
any infinite word u E II. Since Il is open, there must 
be some integer L > 0, such that all infinite words 
that share with cr a prefix longer than L are in II. 
Let B be the prefix of length L + 1 of u. We define Q 
to be the set of all such prefixes. It is not difficult to 
see that E(a) = II. a 

In the inclusion diagram, we denote the character- 
ization of the guarantee properties as the family of 
open sets by the designation G which stands for the 
open sets. 

The Recurrence Properties are the Gb 
sets 

A set is defined to belong to the Ga family if it can 
be obtained as a countable intersection of open sets. 
Note, that if we take only a finite intersection of open 
sets, we still obtain an open set. 

Consider for example the sequence of open sets 

G1 : (a*b).C” , G2 : (c~*b)~Z” , G3 : (A*b)X” , . . ., 

where we assume C = {a, b}. Clearly Gk is the set 
of all words that have at least k occurrences of the 
letter b. It is not difficult to see that the intersection 
of the sequence of these sets yields the set H : (a*b)“‘, 
that consists of all the words having each an infinite 
number of b’s. It can easily be shown that the set H 
is neither open nor closed, but is, by definition a Ga 
set. 

Let us show now that a set II is a recurrence prop- 
erty iff it is a Ga set. 

Assume, first, that II is a recurrence property, i.e., 
II = R(Q) for some finitary 0, and let u E II. For 
every k > 0 define the set +k to be the set of words 
u such that u E @, and cr contains Ic - 1 distinct 
proper prefixes that belong also to 0. Some of the 
sets @p, may be empty, but they cannot all be empty, 
otherwise II would have been empty. For each k > 0 
define now Gh = @k ’ c” = E(@‘L). It is not difficult 
to see that the Gk’s are open, and that 

II=QGk- 

In the other direction, let II be a Ga set, i.e., 
H = n, Gk for some open sets Ge,Gl, . . . . By the 
characterization of open sets, each q k can be repre- 
sented as Gk = +k .c” for some finitary ak. Consider 
an arbitrary cr E II. For every k > 0, u must have 
a prefix @k belonging to @h. Without loss of gen- 
erality we may assume that Bk is the shortest preix 
of u that belongs to +k. There are two cases to be 
considered. In the first case, the lengths of the pre- 
fixes 6k are bounded. In that case there exists a sin- 
gle prefix 5 such that &k 5 8. Defining a finitary 
set @ = nk(@k . cw), we can easily see that ti be- 
longs to a. Thus, in the bounded case, c belongs 
to @ . Cw = E(a). Next consider the case that the 
lengths of the prefixes &k are bounded. Let us de- 
fine a new set of prefixes u;, ai, . . . , where (T; is the 
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shortest prefix of u such that 60 5 ai, . . . , &k 5 0;. 
It is not difficult to see that the lengths of the a; are 

also unbounded. Define the sets \Irk = r)izi(Q. C*). 
Let rk be the prefix free subset of @k, i.e., the set of 
words & belonging to \Ek, such that no proper pre- 
fix of ii belongs to \kk. Clearly, each UE belongs to 
rk. If we denote the union of the Tk’s by T = IJk rk 
then, in the unbounded case, u E R(T) since CJ has 
unboundedly many prefixes belonging to I’. We may 
summarize the two cases by 

for the finitary sets i9 and r defined above. 
It is not difficult to see that E(Q) c Il. For the 

second component, consider some word cr E R(r). 
This word has infinitely many prefixes, each belong- 
ing to some rk. Since the sets rk are prefix free, 
the infinitely many prefixes must belong to infinitely 
many different rk’s. For any i 1 0, there must be a 
prefix 6 4 B belonging to rk for k > i. By the defini- 
tions of rk and \El:, it follows that b E @i . C’. Thus 
u E @i . Cw for every i. Consequently, R(r) c II. We 
may conclude 

n = E(a) u R(r). 

Since the union of a guarantee property with a recur- 
rence property is a recurrence property, we conclude 
that every Ga set is a recurrence property. J 

The Persistence Properties are the F, 
sets 

A set is defined to belong to the F,, family if it can be 
obtained as the countable union of closed sets. Obvi- 
ously, a set U is F0 iff its complement r is Ga. Since 
the complement of a persistence property is a recur- 
rence property, the equivalence between persistence 
properties and Fq sets follows by duality from the 
corresponding results for recurrence properties. 

Topological Characterization of the 
Safety-Liveness Classification 

Following [AS85], we provide a topological character- 
ization of the safety-liveness classification. We have 
already shown that the safety class corresponds to the 
family of closed sets. . 

As claimed in [AS85], the cIass of Iiveness proper- 
ties corresponds to the family of dense sets. A set U 
is defined to be dense in a space, such as Cw, if for 
any word ff E Cw and any integer L > 0, there ex- 
ists a word u’ belonging to U, sharing with u a prefix 

longer than L. Thus, members of W exists arbitrary 
close to any word Q E P’. 

To show that every liveness property is dense, con- 
sider a liveness property II, and let CT be an arbitrary 
word, and L > 0 an arbitrary integer. Let b be the 
prefix of d of length L + 1. By the definition of a 
liveness set there exists some word U’ belonging to II, 
having B as a prefix. Consequently, u and u’ share a 
prefix (at least i?), longer than L. 

4 The Temporal Logic View 

After studying properties and their classification in 
an abstract language - theoretical and topological set- 
tings, we consider a subset of all these properties, 
the properties expressible by temporal logic. We will 
show that the hierarchy introduced in the abstract 
setting, still exists within the set of expressible prop- 
erties, and each class has an additional characterizai 
tion by formulae of a special form that can express 
all the expressible properties belonging to that class. 

As we will see, each class enjoys certain closure 
properties and is associated with an appropriate proof 
principle for verifying that a given program satisfies 
a property in the class. 

Our main interest is in the question of what types of 
properties are expressible in temporal logic (or equiv- 
alent formalisms), and whether temporal logic is pow- 
erful enough to express all the interesting properties 
of reactive systems. 

We will consider each of the basic concepts intro 
duced under the abstract setting and show how to 
restrict them to the framework of expressible proper- 
ties. 

First, we present a short introduction to the lan- 
guage of temporal logic. 

The Language of Temporal Logic 

We assume an underlying assertional language, which 
is used to describe properties of states. in the current 
discussion, we will consider two types of state lan- 
guages. For the case that E is finite, we may use the 
states themselves as basic propositions. 

For example, assume that C = {a,6,c}. Then, we 
may take a, b, and c as basic propositions, that can be 
combined by the usual boolean combinations. Thus, 
the assertion a is true on the state a and is false on 
the states b and c. On the other hand, the assertion 
la, which in our case is also equivalent to bVc is true 
on both the states b and c, and false on the state a. 

The other type of state language we will consider 
assumes that the states have structure, and repre- 
sent intermediate situations in the computation of a 
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concrete programs. In this case, we assume that the 
state contains the current values of all the program 
variables, as well as an appropriate representation of 
the control of the program, which tells us at what 
location the program is currently executing. Thus, 
we will allow basic state-predicates of the form at-.!, 
that tell us that the program is currently executing 
at location 4!, as well as explicit references to the cur- 
rent values of the program variables. We will use this 
version of the state language to illustrate the utility 
of temporal logic for expressing properties of concrete 
programs. 

We refer to a formula in the assertional language 
as a state formula, or simply as an assertion. 

A temporal formula is constructed out of state for- 
mulae to which we apply the boolean operators 7 and 
V (the other boolean operators can be defined from 
these), and the following basic temporal operators: 

0 - Next 0 - Previous 
U - Until S - Since 

A model for a temporal formula p is an infinite se- 
quence of states (i.e., a word) 

u : so, Sl, . ..) 

where each state sj provides an interpretation for the 
state subformulae mentioned in p. 

Given a model u, as above, we present an inductive 
definition for the notion of a temporal formula p hold- 
ing at a position j > 0 in tr, denoted by (a, j) + p. 
For a state formula p, 

That is, we evaluate p locally, using the interpretation 
given by sj. 

(c j) I= ‘P c-4 (4 F P 

p; E&l” e+ (4 I= P or (a,j> != q 

(a1.i) I= puq 
* W+ 1) I=P 
e for some X: 2 j,(u, k) + q, 

and for every i such that j 5 i < k, (u, ;) + p 

(u,j>l=Oop e j>oand(u,j--l)l=p 
(u,d I= PSq e for some k 5 j,(u,k) +q, 

and for every i such that j 2 i > B, (u, i) iz p 

Additional temporal operators can be defined a.s fol- 
lows: 

op = Tup - Eventually 
Elp = 707p - Henceforth 
pUq = Op V (pUq) - Unless 
+ = TSp - Sometimes in the past 
op = 7&p - Always in the past 
@q = mp V (psq) - Weak Since 
@p = 70-p - Weak Previous 

Another useful derived operator is the entailment op- 
erator, defined by: 

P=+!l = q (P + 9). 

A formula that contains no future operators is 
called a past formula. A formula that contains no 
past operators is called a future formula. Note that 
a state formula is both a’ past and a future formula. 
We refer to a past formula (future formula) that is not 
also a state formula, as a strict-past (strict-future, re- 
spectively) formula. For a state formula p and a state 
s such that p holds on s, we say that s is a pstate. 

If (u, 0) + p, we say that p holds on 6, and denote 
it by u b p. A formulap is called satisfiable if it holds 
on some model. A formula is called valid if it holds 
on all models. 

Two formulae p and q are defined to be equivalent, 
denoted by 

P - Q, 

if the formula p s q is valid, i.e., u + p iff u /= q, for 
all u. 

Following are some simple examples of temporal 
formulae and their intuitive meaning as a requirment 
on the sequences (words) that satisfy them. 

p--coq 
If initially p then eventually q. 

q (P --t Oq) 
Every pposition coincides with or is followed by 
q-position. 

ooq 
The sequence u contains infinitely many q- 
positions. 

04 
Eventually persistently q, or equivalently: 
The sequence u contains only finitely many lq- 
positions. 

(7) u P 
If there exist any q-positions, then the first q- 
position must coincide or be preceded by a p- 
position, 

Every q-position coincides with or is preceded by 
a p-position. 

-@T 
There is no previous position that satisfies T. 
Since all positions which are in the model must 
satisfy T, this is equivalent to: 

There is no previous position. 
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Note that this formula uniquely characterize the 
initial position of every model. We refer to this 
formula as first. 

The Temporal Hierarchy of Properties 

First, consider the notion of an infinitary property, to 
which, for simplicity, we will refer simply as a prop- 
erty. In the syntactical framework every property 
II c C” is associated with a temporal formula ‘P. The 
property itself, i.e., the set of sequences belonging to 
II, is defined as the set of all (infinite) sequences sat- 
isfying the formula 9. We denote by Sat((P) the set 
of these sequences. We say that a property II is ex- 
pressible (in temporal logic) if II = S&(P) for some 
temporal formula Cp. 

Next, consider the notion of a finitary property Cp & 
C+. To express such properties we use a past formula 
p. Let cr E C+ be a finite sequence of length 1~1 = n 
and p a past formula. We say that (T end-satisfies p, 
denoted by u =I p, if for some infinite extension u’ E 
P, such that P 4 a’, (u’, n - 1) + p. That is, p 
holds at the last position of u within a’. It is not 
difficult to see that this definition is dependent only 
on the first n positions of u’, i.e., on u. The finitary 
property represented by the past formula p is defined 
to be the set of finite sequences that end-satisfy p. 
For a past formula p, denote by es&(p), the finitary 
property defined by p, i.e., the set of finite sequences 
that end-satisfy p. We say that a flnitary property Q 
is expressible (in temporal logic) if it equals es&(p) 
for some past formula cp. 

For example, the finitary property a’b can be rep- 
resented by the past formula b A &a, which claims 
that b holds now and a holds in all the preceding per 
sitions. 

With these interpretations we can now show that 
the four language operators A, E, R, and P, when 
applied to expressible finitary properties, can be rep- 
resented by the four future modalities 13, 0, 00, 
and 0 I3. This is stated by the following claims 

l Sat(Op) = A(esat(p)) 

l Sot(Op) = E(esat(p)) 

0 Sat(0Op) = R(esat(p)) 

0 Sat(00p) = P(esat(p)) 

Consider, for example, the first clause, It is clear 
that u E Sat(Op) iff u b q p iff all prefixes of u 
end-satisfy p iff all prefixes of u belong to es&(p) iff 
u E A (esat(p)) . 

Similar arguments justify the remaining three 
clauses. 

In the following we will be interested in the clo- 
sure of properties expressible by temporal formulae 
under the operations of union, intersection, and com- 
plementation. The following useful identities show 
that these operations on the properties can be trans- 
lated to disjunction, conjunction, and negation of the 
formulae expressing the properties. 

Sat(V) u Sat(?+q = Sat(PV $) 

Sat(v) n Sat($) = Sat(cp~ g) 
Sut(‘p) = Sat(+), 

where complementation is relative to Y”. 

Safety Formulae 

We define a safety formula to be a formula of the 
form 

OP, 

for a past-formula p. Such a formula states that all 
positions in a computation satisfy p. Equivalently, all 
prefixes of a computation end-satisfy p. 

A property that can be specified by a safety for- 
mula is called a safely-specifiable property. Clearly, a 
property specified by the safety formula Op is a safety 
property, because it can be presented as 

A( esdp)). 

We say that an arbitrary formula is safety-equivalent 
if it is equivalent to a safety property. Obviously, all 
safety-equivalent formulae specify safety properties. 

Usually, safety formulae express invariance of some 
state property over all computations, or precedence 
constraints of the form: if events er and es happen 
then ei must precede es. 

In the simpler cases, p is a &ate-formula, and then 
the formula Op specifies that all states in the compu- 
tation satisfy p. An example of such a simple safety 
property is the formula 

q (r 2 O), 
specifying that, in all states of the computation, the 
value of ?: is nonnegative. 

We will illustrate the utility of state invariances by 
presenting several typical examples. 

0 Partial Correctness 

Let P be a program whose terminal location is 4. 
Let I,!J be an assertion specifying the post condition of 
the program, i.e., constraints on the final state of the 
program. For example, if P computes the factoria1 of 
the input 2, and places it in the output variable t, 
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the post condition can be 4 : (z = z). The program 
is defined to be partially correct, with respect to the 
post condition $ if every dennina2ing computation 
must terminates in a state satisfying +. Nothing is 
implied about non-terminating computation. Partial 
correctness with respect to Q,LJ can be specified by the 
safety formula 

qat-et - $). 

This formula states that it is invariantly true that 
if control is at the terminating location et, i.e., the 
program has terminated, then the post condition $ 
holds. 

l Mutual Exclusion 

Consider a program consisting of two processes PI 
and Pz that need to coordinate their entry to critical 
sections in their code, The program for each process 
Pi is usually partitioned into three sections: Ni, Ti, 

and Ci. The section Ni represents the non-critical 
activity of the process, where no coordination is re- 
quired. The section Ti represents the trying section, 
where a process decides it needs to access its critical 
section, and engages in a protocol that will ensure 
eventual access. The section Ci represents the crit- 
ical section itself. The basic requirement of mutual 
exclusion algorithms is that it is never the case that 
both PI and Pz execute their critical sections at the 
same time. This requirement can be expressed by the 
safety formula 

o-(2-n- Cl A in- Cz), 

where in, Ci is a control predicate expressing the fact 
that Pi is currently executing within the section Ci. 

The more general case of safety formulae of the 
form q p, where p is not a state formula, is illustrated 
by the following examples: 

l Precedence 

The basic precedence formula has the form 

It states that if Q ever occur, then it must be preceded 
by p. There are many applications and corresponding 
interpretations to this formula. For example, it can 
be interpreted as the property of casual dependence 
of q upon p. That is, q cannot happen unless it is 
caused by p. If Q is a response to the request p, then 
this property claims that the system does not repond 
spuriously, without being requested. 

The same property can also be specified by the 
future formula (-q)Up. While this is not a safety 
formula, it is equivalent to the safety formula given 
above, and therefore specifies precisely the same prop- 
erty. 

l FIFO ordering 

Assume that q represents a response to a request p, 
and q’ represents a similar but disjoint response to the 
request p’. For example, the two may represent sim- 
ilar responses to different customers. The following 
safety formula states that the order of the responses 
matches the order of the requests. 

Note that this formula does not guarantee any re- 
sponses, but it claims that if they appear, they appear 
in the right order. 

Closure of Properties Expressible by Safety 
Formulae 

The class of properties expressible by safety formulae 
is closed under the positive boolean operations, i.e., 
intersection and union. As stated before, it suffices to 
show that if CP and 111 are safety formulae then both 
Cp A $J and ‘P V 1c, are equivalent to safety formulae. 
That is, it suffices to show that the class of safety- 
equivalent formulae is closed under conjunction and 
disjunction. 

To see this we present the following equivalences for 
the conjunction and disjunction of safety formulae: 

(UP A Ql) - O(P A 4) 

(UP v %I) - D(QP VQq). 

The left-hand side of the second equivalence states, 
for a computation 6, that either all positions in CT 
satisfy p or all positions in c satisfy Q. The right- 
hand side states that for each position i, either all 
positions j 5 i satisfy p, or all positions j 2 i satisfy 
q. To see that the right-hand side implies the left- 
hand side, we consider two cases. If all positions in cr 
satisfy both p and q then, clearly, the left-hand side 
follows. If for some j, (a, j) # p, then the only way 
the right-hand side can hold is by having for all i 1 j, 
(~,i) /= Oq, from which Oq follows. 

Since the right-hand side of both equivalences is a 
safety formula (under the assumption that p and q are 
past-formulae), this establishes the closure of proper- 
ties expressible by safety formulae under intersection 
and union. 

An important formula is the formula of conditional 
safety, in which a property expressed by q q is condi- 
tional on a state-formula p holding at the first state 
of the computation. This formula has the form 

P-Q* 
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While not being a safety formula itself, this formula 
is safety-equivalent due to the equivalence 

(P + w TV ( ( 
0 0 (p A first) + B)). 

The formula on the right states that at each position 
j, if j has been preceded by some paition i 5 j that 
satisfies p and is also first (forcing i = 0), then q 
should hold at j. 

0 Full Partial Correctness 

In specifying terminating programs, one usually spec- 
ifies a precondition ‘P, in addition to the postcondition 
$. The role of the precondition is to constrain the in- 
puts for which the program is expected to produce the 
right result. For example, for the factorial comput- 
ing program, a natural precondition is: 9 : (z > 0), 
claiming that the program is expected to produce a 
correct result only if we start it with a non-negative 
input. The partial correctness of a program P with 
respect to both the precondition GF and the postcon- 
dition GP can be specified by the conditional safety 
formula 

Guarantee Formulae 

A guarantee fonnvla is a formula of the form 

OP, 

for some past-formula p. Such a formula states that 
at least one position in a computation satisfies p. 

A property that can be specified by a guaran- 
tee formula is called a guarantee-specifiable property. 
Clearly, any property that can be specified by the 
guarantee formula Op is a guarantee property, since 
it can be presented as 

An arbitrary formula is defined to be guarantee- 
equivalent if it is equivalent to a guarantee formula. 

Usually, guarantee formulae ensure that some event 
eventually happens. They guarantee that the event 
happens at least once, but cannot promise any repe- 
titions of the event. Therefore, they are mainly used 
to ensure events that happen once in the lifetime of 
a program execution, such as termination. 

Obviously, a formula specifies a guarantee- 
specifiable property iff it is equivalent to some guar- 
antee formula. 

An example of the simple case, in which p is a state- 
formula, is the formula 

O(terrninal) 

specifying that some state of the computation is ter- 
minal. Clearly if all computations of a given program 
satisfy this formula, the program is terminating. In- 
stead of using the abstract predicate terminal, we 
can use the more concrete formula 0(&J,), claim- 
ing that all computations eventually reach the termi- 
nal location !,. 

We observe that the conditional guarantee formula 

P--+04, 

while not being a guarantee formula, still specifies 
guarantee-specifiable properties. This is because it is 
equivalent to the guarantee formula 

O(fird Ap + q). 

This formula states that eventually we reach a posi- 
tion such that if, looking back towards the origin, we 
detect that p held at the initial position, then q holds 
now. 

l Total Correctness 

Consider a program P associated with a precondition 
P and a postcondition $‘. The program P is said to 
be totally correct with respect to (cP,$‘) if all compu- 
tations starting at a V-state terminate at a&state. 
This property can be expressed by the conditional 
guarantee formula 

Closure of Guarantee-Specifiable Properties 

Many features of the guarantee-specifiable class of 
properties can be obtained by the duality relation be- 
tween the safety-specifiable and guarantee-specifiable 
classes. This duality is based on the equivalence 

1op w O(--@p). 

Fromthis equivalence we can immediately conclude 
that II is a guarantee-specifiable property iff the com- 
plementary property ?I (i.e., the set of all computa- 
tions not in n) is a safety-specifiable property. 

In principle we could justify the closure properties 
of the guarantee-specifiable class, using duality and 
the corresponding closure properties of the safety- 
specifiable class. However, we prefer to give an in- 
dependent justification. 

Similarly to the class of safety-equivalent formulae, 
the dass of guarantee-equivalent formulae is closed 
under the positive boolean operations of disjunction 
and conjunction. 
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This can be shown using the following equivalence 
and equivalence: 

(OP v Oq) - Ob v ql 
(OP A Od - O[OP A %I- 

The second equivalence claims that a computation u 
contains both a p-position (a position satisfying p) 
and a q-position iff it has a position i such that there 
exist a q-position j 5 i, and a p-position E 5 i, pre- 
ceding i. 

The class of guarantee-equivalent formulae is not 
closed under negation. On the other hand, the nega 
tion of a guarantee formula is equivalent to a safety 
formula. Similarly, the negation of a safety formula 
is equivalent to a guarantee formula. 

This is due to the following two equivalences: 

(TOP) - 0(-p) 

(-op) - 0 (-P). 

We say that the classes of guarantee-equivalent and 
safety-equivalent formulae are dual; as each can be 
obtained by the negation of the other. 

Obligation Formulae 

Some properties cannot be expressed by either safety 
or guarantee formulae alone, and must be expressed 
as a boolean combination of such formulae. We there- 
fore consider the class of such properties. 

A simple obligation is a formula of the form 

UP v Oq, 

where p and q are past formulae. This formula states 
that either p holds at all positions of a computation 
or q holds at some position. 

A property that can be specified by a simple obli- 
gation formula is called a simple obligation specijiable 
property. Clearly, any property that can be specified 
by the simple obligation formula OpV Oq is a simple 
obligation property, since it can be presented as 

A(esat(p)) U E(esat(q)). 

An obviously equivalent form for a simple obligation 
formula is 

Or - oq, 

which states that if some position satisfies r then 
some position (possibly the same) satisfies q. 

l Exceptions 

A typical example of properties that are naturally 
specified by obligation formulae is that of exceptional 
occurrences. Assume a program that in the normal 
course of its behavior is not supposed to terminate 
but to maintain some regular activity. However, in 
the case of the occurrence of some exceptional event 
p, it is supposed to take some exceptional action q 
and to terminate. Specifying this behavior can be 
done by the guarantee foimula 

Note that this formula also guarantees that q happens 
only after some occurrence of p. 

General Obligation Formulae 

The class of properties specifiable by simple obliga 
tion formulae is closed under union. To see this, we 
observe the trivial equivalence 

[(“PI v OPl) v (DP2 v %2)] - 

[@PI v q P2) v (%l v 0!?2>]. 

Using the closure of both the safety- and guarantee- 
equivalent formulae under disjunction, this leads to 
an equivalent simple obligation formula. However, 
the class of properties specifiable by simple obliga- 
tion formulae is not closed under intersection. This 
implies that by taking conjunctions of simple obliga- 
tion formulae we obtain a more powerful class. 

We therefore define a31 obligation formula to be a 
formula of the form 

i=l 

Correspondingly, a property specifiable by such a for- 
mula is called an obligation property. A formula 
that is equivalent to an obligation formula is called 
obligation-equivalent 

This class is the largest class that can be obtained 
by taking finite boolean combinations of safety and 
guarantee formulae. 

Claim 
Every boolean combination of safety and 
guarantee formulae is equivalent to an obli- 
gation formula. 

To see this, consider an arbitrary boolean combina- 
tion of safety and guarantee formulae. First we push 
all negations into the past-formulae, changing A into 
V, •I into 0, and vice-versa. Next we bring the for- 
mula into a conjunctive normal form: 

II 

A[ up; v . . . v upi; v oqf v . . . v oqk,]. 
i=l 
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We then use the closure properties of the safety and 
guarantee formulae to collapse all of q pf V . , .V Cl& 

into a single safety formula, and Vqf V . . . V Vqii 
into a single guarantee formula. 

l Accessibility 

This claim also implies that the class of obligation- 
equivalent formulae is closed under all boolean oper- 
ations. 

Inclusion 

The class of obligation-specifiable properties strictly 
contains the classes of safety specifiable and guaran- 
tee specifiable properties. In fact, the property de- 
scribed by Up V Vq for propositions p and q cannot 
be specified by either safety or guarantee formulae. 

Consider again a program for solving the mutual ex- 
clusion problem. As already mentioned in the intro- 
duction, the safety property that disallows the two 
processes to co-reside in their critical sections is only 
part of the specification. It can easily be implemented 
by a program that does not allow any of the processes 
to ever access its critical section. To exclude such spu- 
rious solutions we must add to the specification the 
requirement that each process interested in entering 
the critical section will eventually succeed. This prop- 
erty can be specified by the response formula 

The class of obligation-specifiable properties forms 
an entire infinite strict hierarchy. The class of prop- 
erties expressible by a conjunction of n + 1 simple 
obligation formulae strictly contains the class corre- 
sponding to a conjunction of only st simple obligation 
formulae. 

This formula requires that whenever one of the pro- 
cesses is observed to occupy the trying section Ti, 
then eventually it will be observed in the critical sec- 
tion Ci. 

Closure of Recurrence-Specifiable Properties 
Recurrence Formulae 

A recurrence formula is a formula of the form: 
The class of properties expressible by recurrence for- 
mulae is closed under the positive boolean operations. 

q OP, 
This is shown by the following equivalences: 

for some past-formulap. It states that infinitely many 
positions in the computation satisfy p. 

A property that can be specified by a recurrence 
formula is called a recurrence-specifiable property. 

Clea.rly, a property specifiable by the recurrence 
formula OOp is a recurrence property, since it can be 
presented as 

R( e4d) - 

[OVP v OV41 - DV(P v 4) 

[oop A ovq] - 00 (4 A O(WP))~ 

The past formula q A a((-q) Sp) expresses precisely 
the miner operator applied to the finitary properties 
es&(p) and esat(g), that is, 

A formula that is equivalent to a recurrence formula is 
called recurrence-equivalent. One of the most impor- 
tant recurrence-equivalent formulae is the following 
formula, called a response formula 

esat(g A o((-4)s~)) = minez(esal(p), esat(q)). 

The fact that this formula is recurrence equivalent is 
established by the equivalence 

O(P - Oq) - q O((YP)uq). 

The formula on the right states that there exists in- 
finitely many positions in which there is no pending 
request, i.e., a request that has not been followed by 
a response + 

To see this, let u be a finite sequence that end- 
satisfies p A Q ((7q) Sp) . By definition its last po- 
sition satisfies q, and hence u E esat(q). The for- 
mula @((-q)Sp), holding at the last position of (T, 
requires that there exists some proper prefix u’ < u, 
such that u’ end-satisfies p, and hence u’ E esat(p), 
and for every u”, u’ 4 u” 4 u, 19’ does not end- 
satisfy q, i.e., u” 4 esat(q). It clearly follows that 
u E mine2 (esat(p), esat(q)). 

Inclusion of the Lower Classes 

Usually, recurrence properties ensure that some All safety and guarantee formulae can be shown to 
event happens infinitely many times. When speci- be special cases of recurrence formulae. Thus, the 
fied by response formulae, they can express the prop- class of recurrence-specifiable properties contains the 
erty of responsiveness of a system, stating that every classes of safety-specifiable and guarantee-specifiable 
stimulus has a recurrence. properties. 
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This containment is supported by the following two 
equivalences: 

UP - q OPP) 
OP - q O(OP). 

The second equivalence, for example, states that a 
computation Q has a p-position iff there are infinitely 
many positions in whose past there is a p-position. 

The containment of both classes is strict. This 
means that there is a recurrence property, which can- 
not be expressed by either a safety or a guarantee for- 
mula. In fact, the formula q Op, for a state formula 
p, cannot even be expressed by any finite boolean 
combination of safety and guarantee formulae. 

Expressing Weak Fairness 

One of the important properties belonging to the 
recurrence-specifiable class is that of weak fairness. 
The representation of concurrent programs as fair 
transition systems (see for example [MP83]) asso- 
ciates a weak fairness requirement (also called justice) 
with each transition T in the system. This require- 
ment can be formulated aa 

It is not the case that, from a certain point 
on, the transition r is continually enabled 
but never taken. 

Thus, any computation satisfying this requirement 
must have infinitely many positions at which either 
7 is disabled or 7 is taken. This can be expressed by 
the recurrence formula 

0 0 [Y&(T) V taken(r)]. 

We assume the existence of the state predicates &I(T) 
and taken(r), which test whether the transition 7 is 
enabled or taken at a given state. 

Persistence Formulae 

A persistence formula is a formula of the form 

0 UP, 

for some past-formula p.. The formula states that all 
but finitely many positions (all positions from a cer- 
tain point on) in the computation satisfy p. 

A property that can be specified by a persistence 
formula is called a persistence-specifiable property. 
Clearly, any property that can be specified by the 
persistence formula OOp is a persistence property, 
since it can be presented as 

p( es+)). 

A formula that is equivalent to a persistence formula 
is called persistence-equivalent. 

Usually, persistence formulae are used to describe 
the eventual stabilization of some state or past prop- 
erty of the system. They allow an arbitrary delay 
until the stabilization occurs, but require that once it 
occurs it is continuously maintained. 

For example, p may represent a certain stimulus 
to the system, and it is required that following an 
occurrence of p, the system will eventually stabilize 
by continuously maintaining q. This requirement may 
be specified by the conditional persistence formula 

O(P + OOq), 

which is persistence-equivalent, since it is equivalent 
to the persistence formula 

OO(OP + q). 

The latter formula states that all the states, from a 
certain point on, satisfy the requirement that if p has 
already occurred then q currently holds. Note that 
this also covers the case that p never occurs, and hen 
nothing is implied about q. 

Closure of Persistence-Specifiable Properties 

The class of properties that, can be expressed by per- 
sistence formulae is closed under the positive boolean 
operations. 

This is shown by the following equivalences that 
can also be derived by duality from the corresponding 
equivalences for the recurrence case: 

(OOP A OOq) - OO(P A q) 
(OOp v OOq) - 00 

( 
q v 

O(PS(P A be,))) 

TO see the validity of the second equivalence, we will 
show first that the left-hand side implies the right- 
hand side. 

Obviously, Oaq implies the right-hand side. If 
Oap is true and OOq is not, let i be the position 
beyond which p is true, and j 2 i some position at 
which q is false (by OOq being false there are in- 
finitely many such positions). It is easy to see that 
for every position k 2 j, (u, k) + Q(pS(p A (-q))). 

Next, we show that the right-hand side implies 
the left-hand side. Again, we consider two cases. 
If OOq holds, then obviously the left-hand side fol- 
lows. In the other case, there are infinitely many 
lq-positions. Let i be the position beyond which 

ti: Q v O(PS(P A (‘Q))) continuously holds. Con- 
sider an arbitrary position j 1 i, and let k > j be the 
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first lq-position to the strict right of j. Since 1c, holds 
at k and q does not, it follows that o(pS(p~ (yq))) 

must hold at k. This means that p must extend from 
k - 1 to the left up to, and including, the first YQ- 
position to the left of k. Since there is no -q-position 
between j and k, p must also hold at j. Since j is an 
arbitrarily chosen position to the right of i, it follows 
that q p holds at i, and hence OOp holds at position 
0. 

The classes of properties specifiable by persistence 
and recurrence formulae are dual. This means that 
the complement of a property in one of the classes 
belongs to the other. This is supported by the two 
equivalences: 

3OOP) - 09P) 

-(OOp) - 00(-p). 

This duality can he used for easy transfer of results 
holding for one class into the other class. For ex- 
ample, all the closure and inclusion properties, of 
the persistence-specifiable class, as well as the proofs 
about the extended persistence formulae, can be de- 
rived from the corresponding properties and proofs of 
the recurrence-specifiable class. 

Inclusion of the Lower Classes 

All safety and guarantee formula are special cases 
of the persistence formula. Thus, the class of 
persistence-specifiable properties contains the classes 
of properties specifiable by safety and guarantee for- 
mulae. 

This containment is supported by the following two 
equivalences: 

OP N 0 WP) 

OP - 0 WP). 

The second equivalence, for example, states that a 
computation u has a pposition iff all positions, from 
a certain point on, have p in their past. 

The containment of both classes is strict. This is 
shown by the property OOp for a state-formula p, 
that cannot be expressed by either a safety or a guar- 
antee formula. In fact, it cannot be expressed by any 
finite boolean combination of safety and guarantee 
formulae. 

Simple Reactivity Pormulae 

A simple reactivity fonzlula is a formula formed by a 
disjunction of a recurrence formula and a persistence 
formula 

oop v ooq. 

This formula states that either the computation con- 
tains infinitely many p-positions, or all but finitely 
many of its positions are q-positions. 

A property that can be specified by a simple re- 
activity formula is called a simple reaclivity-specified 
properly. Clearly, any property that can be speci- 
fied by the simple reactivity formula ClOpV OOq is a 
simple reactivity property, since it can be presented 
as 

R(esal(p)) U P(esal(q)). 

In many cases we specify such properties by a formula 
of the form 

oar - q op, 

which is obviously equivalent to a simple reactivity 
formula. 

This formula states that if the computation con- 
tains infinitely many r-positions it must also contain 
infinitely many ppositions. It is used to describe re- 
sponsiveness of a more complicated type, which is not 
based on one-to-one correspondence between stimulus 
to response. It is only when we have infinitely many 
stimuli that we must respond by infinitely many re- 
sponses. This is a convenient abstraction to a situa- 
tion in which we want to commit the system to even- 
tually respond, but not specify a bound on how many 
stimuli may happen before the eventual response. 

The Different types of Responsiveness - A 
Summary 

So far, we have encountered several types of respon- 
siveness, which can be specified by formulae belong- 
ing to the different classes. Let us review these dif- 
ferent versions. As usual, assume that p represents a 
stimulus, to which the system responds by producing 

The guarantee-equivalent formula 

P-+ 099 

ensures that if p is true inilially then q will even- 
tually happen. 

The obligation-equivalent formula 

OP - O(q A OP), 

ensures that if p happens at least once, then its 
earliest occurrence will be followed by at least 
one occurrence of q. 

The recurrence-equivalent formula 

O(P - Oq), 

ensures that every occurrence of p is followed by 
an occurrence of q. 
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l The persistence-equivalent formula 

p+ 047, 

ensures that an occurrence of p will be eventually 
followed by a continuous maintenance of q. 

l The reactivity-equivalent formula 

oop--r ooq, 

ensures that infinitely many occurrences of p are 
responded to by infinitely many occurrences of 

Q- 

The type of responsiveness represented by sim- 
ple reactivity formulae allows the program P to ig- 
nore finitely many requests but not, infinitely many 
of them. This description should not be taken too 
literally, in the sense that no implementation of this 
requirement can be based on the idea of “let us wait 
first and see whether there are going to be infinitely 
many c = 1 events or only finitely many of them.” 
Any reasonable implementation of such a requirement 
must sincerely attempt to respond to all requests, but 
the liberal specification tolerates failures to respond 
in the case of only finitely many requests. 

The class of properties specifiable by simple reac- 
tivity formulae is closed under union. This is due to 
the equivalences 

[(OOPI v 0%) v (OOP2 v OOq,)] - 

[(OOP, v q OPZ) v (OOq1 v OQ2)] 

and the closure of the recurrence and persistence- 
specifiable classes under union. 

However, the reactivity-specifiable class is, in gen- 
eral, not closed under intersections or complementit 
Cons. 

Obviously, the class of properties specifiable by 
simple reactivity formulae contains the classes of 
properties specifiable by recurrence and persistence 
formulae, and hence also the classes specifiable by 
safety, guarantee and obligation formulae. This con- 
tainment is strict since the property specifiable by 
q Op V 0 q q cannot be expressed by any formula be- 
longing to a lower class. 

Expressing Strong Fairness 

Simple reactivity formulae can express the require- 
ment of strong fairness associated with special tran- 
sitions of a fair transition system. Typically, we as- 
sociate strong fairness requirements with transitions 
that correspond to communication or synchronization 

statements in the program, such as statements deal- 
ing with semaphores. 

The strong fairness requirement associated with a 
transition 7 demands that 

It is not the case that 7 is enabled infinitely 
many times but taken only finitely many 
times. 

Equivalently, this requirement demands that if the 
transition r is enabled infinitely many times in a com- 
putation CT, then it must be taken infinitely many 
times. This can be expressed by the simple reactivity 
(-equivalent) forniula 

00En(~) + OOtaAen(r). 

General Reactivity Properties 

Richer classes of properties can be expressed by con- 
junctions of simple reactivity formulae of the form 

/;[OOP$ v oogi]. 
i=l 

Since, in general, the conjunction of two simple re- 
activity formulae is not equivalent to any simple re- 
activity formula, taking such conjunctions leads to a 
stronger expressive power. 

We call such formulae reactivity formulae, and the 
properties they specify reactivity-specifiable proper- 
ties. 

The class of reactivity-specifiable properties is the 
maximal class we need ever consider. This is due to 
the following normal form theorem: 

Theorem (reactivity) 

Every temporal formula is equivalent to a 
reactivity formula. 

The proof of this theorem is based on a translation 
between future and past temporal formulae. A de- 
tailed proof of this theorem is beyond the scope of 
this paper. 

A natural example of a property specifiable by a re- 
activity formula is the total statement of fairness for 
a fair transition system. Since each individual fair- 
ness requirement is expressible by a simple reactivity 
formula (recurrence formula if it is a weak fairness 
requirement,), the statement that all fairness require- 
ments hold is expressible as the conjunction of several 
simple reactivity formulae. 

Our approach to specification of programs is inher- 
ently conjunctive. This means that a specification is 
presented as a conjunction of requirements, expressed 
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by temporal formulae, all of which should be valid 
over the program, In verifying that a specification is 
valid over a given program, we can verify the validity 
of each requirement separately. Therefore, the fact 
that one of the requirements is a conjunction by it- 
self, rather than a simple reactivity formula, does not 
greatly complicate or simplify the situation. Hence, 
in the context of a full specification, which is always 
a conjunction, we may assume each requirement to 
be at most a simple reactivity formula. 

The family of properties specifiable by reactivity 
formulae forms an infinite hierarchy by itself. Level 
k of the hierarchy, for k > 0, consists of all the prop- 
erties that can be specified by a conjunction 

/;\ popi v Oh] 
i=l 

for some n 5 k. This hierarchy is strict, since the 
conjunction 

n+1 
A [“OPi V O&i] 

i=l 

with pi, qi, i = 1,. . . , n +. 1, being uninterpreted 
propositions is not equivalent to any conjunction of 
n or fewer simple reactivity formulae. 

Relating the Syntactic and Semantic 
Classifications 

As we will see, the syntactic hierarchy of proper- 
ties, based on their expression by particular form of 
formulae, is identical to the semantic hierarchy, based 
on the construction of infinitary properties by apply- 
ing the operators A, E, R, and P, to finitary prop- 
erties. When introducing the class corresponding to 
each type of formula 6, where 

KE 
1 

s&y, guarantee, obligation, 
recurrence, persistence, reactivity > 

we immediately showed that any K-specifiable prop- 
erty is a K property according to the semantic classifi- 
cation. For example, as soon as we defined the notion 
of a safety formula, we have shown that any property 
specifiable by a safety formula is a safety property 
according to the semantic classification. 

We are now ready to consider the other direction. 
Suppose II is an infinitary property, that is known 
to be specifiable by a temporal formula, and is also 
known to be a K-property. Can we conclude that it is 
a K-specifiable property? We have already answered 
this question positively for the case K = reactivity. 
This is due to the previous theorem that stated that 

any temporal formula is equivalent to a reactivity for- 
mula. The next theorem answers this question posi- 
tively for the other classes as well. 

Theorem 

Every infinitary property of type K that is 
specifiable by a temporal formula, is specifi- 
able by a formula of type K (every specifiabIe 
K-property is a n-specifiable property). 

The correspondence between the syntactic and se- 
mantic classification includes also the subhierarchies 
within the obligation and reactivity classes. For ex- 
ample, if a property is specifiable, and can also be 
presented as the intersection ny=‘=, (A(@:) U E(Q,:‘)); 
then it can also be specified by a formula of the form 
;I=:( Opi V 0 qi) for some past formulae pi and qi, 

,***, n. 
It is beyond the scope of this paper to give a proof 

of this theorem. We refer the reader to [Zuc86], where 
some of these issues are discussed. 

The Syntactic Characterization of Live- 
ness 

Similarly to our previous efforts to give a syntactic 
characterization to the semantic hierarchy, we provide 
a syntactic characterization to the class of Jiveness 
properties. 

We define a Jiveness formula to be a formula of the 
form 

0 
( 

\j(Pi A 0%) 9 

i=l > 

where qi, i = 1,. . . , n, are satisfiable fvlvre formulae, 
and p;, i = l,... ,n, are past formulae, such that 

w;c’=, Pi) is a valid formula. 
It is not difficult to see that any infinitary prop- 

erty II specifiable by a liveness formula is a liveness 
property. To see this, let u E C+ be any finite se- 
quence of length Ial = m. By the requirement that 
q l(V~=, pi) is valid, u end-satisfies the disjunction 
Vy=‘=, pi, which means that it end-satisfies one of the 
disjuncts, say pj. Since qj is satisfiable there exists 
an infinite sequence u’ satisfying qj. Consider the se- 
quence urr = u . d, obtained by concatenating u’ to 
the end of u. It is obvious that position m - 1 in 
u” satisfies pi, and position m satisfies qj. It follows 
that position m - 1 satisfies pj h Oqj, and therefore 
Utl satisfies 0 (Vy=‘=, (pi A 0 Qj)) . 

Consider the formula (p --+ OOg) A ((1p) + 
00(-q)), where p and q are propositions. This for- 
mula specifies a property II which is a liveness prop- 
erty but not a uniform liveness property. Indeed this 
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formula is equivalent to the liveness formula l P C Q - A set of persistent automaton-states. 

0 (qfirst A p) A 0 q v [ > 
(0 (first A c-P>) A ow)] . 

El;;:, the formula Cl (O(firsf A p) V 0 (firsl A (7~))) 

The following theorem establishes the connection 
between the semantic and syntactic characterization 
of liveness . 

Theorem 

A property II that is specifiable in temporal 
logic, is a liveness property iff it is specifiable 
by a liveness formula. 

Again, we provide no proof of this theorem. 
Since our main interest is in properties that can be 

specified by temporal logic, we will drop in the fu- 
ture the specifiable qualifier. Thus, when we will talk 
about safety properties, we mean specifiable safety 
properties, and referring to liveness properties, we 
mean specifiable liveness properties. 

An alternative syntactic characterization of live- 
ness is given by the formula 

0 ;I(Pi 
( 

+ 0%) , 

i=l > 

whereqi,i=l,..., n, are satisfiable future formulae, 
andp;, i= l,..., n, are past formulae, such that, for 
every i # j, q -(pi A pj) is a valid formula, 

5 The Automata View 

An alternative formalism for specifying temporal 
properties is that of finite-state predicate automaton 
(see [AS89], [MP87]). In the version we consider here, 
a predicate-automaton M consists of the following 
components: 

l Q - A finite set of automaton-states. 

l qo E Q - An initial automaton-state. 

l T = {t(qi, qj) 1 qi, qj E Q} - A set of transition 
conditions. For each qi, qj E Q, t(qi, qj) is a state 
formula specifying the computation states under 
which the automaton may proceed fromqi to qj. 
We assume that each t(qi, qj) is either syntacti- 
cally identical to the constant F, or holds over 
some computation state s. 

l R s Q - A set of recurrent automaton-states. 

Let 
u:so,s1,... EC” 

be an infinite computation. Computations are fed as 
input to the automaton which either accepts or rejects 
them. An infinite sequence of automaton-states 

T:qo,ql,**- EQW, 

is called a run of M over u if: 

1. The first state of the run, qo, is the initial state 
ofM. 

2. For every i > 0, si-1 I= t(qi-l,qi)* 

Note that the automaton always starts at qo, and SO 
causes it to move from qo to q1. 

We define the infinity set of r, inf(r), to be the set 
of automaton-states that occur infinitely many times 
in P. 

A run T is defined to be accepting if either inf(r) n 
R # CJ~ or inf(r) E P. The automaton M accepts 
the computation cr if there exists a run of M over u 
which is accepting. This definition of acceptance has 
been introduced by Streett ([Str82]). 

An alternative definition, given in [MP87] is that 
all runs of A over c are accepting. 

The automaton ,U is called complete if for each q E 

Q, 
v t(q, d> = =. 

4’EQ 

It is called deterministic, if for every q and q’ # q”, 
t(q,q’) -+ -t(q, q”), that is, we cannot have both 
t(q, q’) and t(q,q”) true at the same time. 

In this paper we restrict our attention to com- 
plete deterministic automata. Deterministic au- 
tomata have exactly one run P corresponding to each 
input computation u, and hence the definition of ac- 
ceptance in [MP87] coincides with the one used here. 

Let G = R U P and B = Q - G. We refer to G 
and B as the “good” and “bad” sets of states, respec- 
tively. We define the following classes of automata by 
introducing restrictions on their transition conditions 
and accepting states. 

l A safety automaton is such that there is no 
transition fromq E B, to q’ E G, i.e., for every 
q E B, q’ E G, t(q, q’) E F. That is, the automa- 
ton cannot move from a bad state (q E B) to a 
good state (q’ E G). 

l A guarantee automaton is such that there is no 
transition from q E G to q’ E B. 
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l A simple obligation automaton is such that: 

- There is no transition from q @ P to q’ E P. 

- There is no transition from q E R to q’ $ R. 

The above definition implies that once a run ex- 
its P, it can never reenter P again, and once it 
enters R, it can never get out. This can be gen- 
eralized to general obligation as follows: 

l A (general) obligation automaton (of degree k) 
is an automaton, in which each state q E Q has 
a rank p(q), 0 5 p(q) < k, such that: 

- There is a transition from q to q’ , i.e., 

t(n, q’> # F, only if &2> 5 kW. 

- There is a transition from q E B to q’ E G 
only if dq> < Ad>- 

- There is no transition from a state q E G of 
rank k to a state qf E B. 

This definition leads to the fact that a run can 
move from B to G (equivalently, move from G 
into B), at most k times. It is easy to see that 
the case of k = 1 corresponds to the definition 
of a simple obligation automaton, with P being 
the set of G-states with rank 0, and R being the 
set of G-states with rank 1. 

l A recurrence automaton is such that P = 4. 

l A persistence automaton is such that R = 4. 

l A simple reactivity automaton is an unrestricted 
automaton of the above type. 

We define the property specified by an automaton 
M, IIM, as the set of all infinite computations that 
are accepted by M. 

In order to attain expressive power comparable to 
(and even exceeding, see wo183]) that of temporal 
logic we have to consider a more general type of au- 
tomaton. 

We define a Streett Predicate Automaton to be a 
structure 

M = (Q,qo,TJ) 

where Q, qo, and T are as defined above, and L is a 
finite list of pairs of acceptance sets. 

L= (Rl,Pl),...(R~.,P~) 

A run r of a Streett automaton is accepting if for 
eachi= l,... , k, either inf(r)n& # 4 or inf(r) c Pi. 
The notions of computations accepted by such au- 
tomaton and the properties specified by it are similar 
to the simpler case. This type of automaton has been 

studied by Streett in [Str82], and is the dual of Ra- 
bin’s automaton ([Rab72]). 

Obviously, all the preceding types of automata are 
special cases of a Streett automaton with k = 1. We 
associate a general Streett automaton with the class 
of (general) reactivity properties. 

An infinitary property II 2 Cw is defined to be 
specifiable by automata, if there exists a Streett au- 
tomaton M, which accepts an infinite sequence u iff 
cr E II. The following proposition relates the syn- 
tactic characterization of the different types of au- 
tomata to the semantic characterization of the prop- 
erties they specify. 

Proposition 5.1 A properly II, that is specifiable by 
automata, is a K-property $7 it is specifiable by a IC- 
automaton, where K E {safety, guarantee, obligation, 
recurrence, persistence, reactivity}. 

For most of these types, this proposition has been 
proved in [Lan69], with some minor differences in the 
definitions of a safety and guarantee automata. The 
case of reactivity, and in fact the complete hierarchy 
above, has been solved in [Wag79]. 

For completeness, we include below our version of 
a proof of the proposition, which for most of the cases 
is straightforward. 
Proof 

It is simple to show that a K-automaton specifies 
a K-property. Let M be a rc-automaton. Since M is 
deterministic and complete, there is, for each finite 
computation u E C+, a unique state q, denoted by 
S(qo,a), such that the run of M on u terminates (a 
is finite) at q. 

Define II(q) = (C E C+ ) S(qo, a) = q) for each 

q E Q. 
Obviously, an infinite 0 is accepted by M iff its cor- 

responding run r, either visits infinitely many times 
states in R, or is constrained from a certain point to 
visit only P-states. This means that either cr contains 
infinitely many prefixes in II(q) for q E R, or that all 
but finitely many prefixes of (T are in II(q) for some 
q E P. It follows that 

UM = R( u n(q)) ‘-‘St u %I>). 

9ER QEP 

Consequently, every property specifiable by a single 
automaton is a reactivity property. However, as we 
will show for the special cases of K-automata, this 
expression can be further simplified. 
n For a safety automaton, it is clear that no finite 
prefix of an acceptable computation can be in lls = 

u (1 II q . This is because, once a run visits a bad state 
qeB 

402 



q E B, it can never return to a good state. Hence for By the construction of G, if u E Pref(II), then 
safety automata we also have 6(qo,u) E G. 

Assume that (T $ Pref(Ii). This means that 
cr cannot be a prefix of a computation in Il. Let 
b(qo,a) = q. We would like to show that q $ G. 

which establishes ll~ as a safety property. 
n For a guarantee automaton, once a run visits a 
good state it can never visit a bad state. It follows 
that 

b4 = E( u wlN9 
qeG 

which shows that ll~ is a guarantee property. 
m For a recurrence automaton, we are given that 

P = 4, and therefore IBM = R( U II(q)). 
(IER 

n For a persistence automaton, we are given that 
R = 4, and therefore IlM = P( U II(q)). 

PEP 

Assume to the contrary that q E G. This can 
only be caused by another finite computation u’ E 
Pref(Il) such that also, S(qo,a’) = q. If cl’ E 
Pref(II), there must exist an extension cr” E C“‘, 
such that u’ . u” E II. Consider the mixed computa- 
tion u . d’ E C”. Let r be the run of (Q,qo,T) over 
u . a”, and rt the run of (Q, qo, T) over ut * a”. Since 

qqoP) = 6(qo,u’) = q, these runs coincide after a 
finite segment. It follows that inf(r) = inf(r’), and 
hence u . utt should be accepted. This contradicts our 
assumption that (T $2 Pref(lI). Hence our claim is 
established. 

It is now easy to show that u E Cw is accepted by 
Mt iffuE II. 

Consider now the other direction of the proposi- 
tion. It states that a K-property specifiable by au- 
tomata can be specified by a K-automaton. Assume 
that a K-property IT is specifiable by automata. Thus, 
there exists a Streett automaton 

Denote by 6’ the transition function based on Tt. 
Assume that u is accepted by Mt, and let r be its 
corresponding run. To be accepting, r must go in- 
finitely many times through G-states. By the way 
we defined T’, this means that M’ only visits G- 
states. Since T and T’ are identical as long as we 
only visit G-states, this means that for every u’ 4 u, 

qqo, 4 = #(qo, u’) E G. It follows that every ut 4 u 
is in Pref(II), and since II is a safety property, that 
u E II. 

M=(Q,qo,T,L), L={(Ri,E), i=L.$) 

specifying II. 
Let a:& x C+ H Q be the function, based on T, 

that, for each state q E Q and each finite computation 
cr E C+, yields the state b(q,a) E Q reached by the 
automaton starting at q and reading the computation 
u. 
n Consider first the case that II is a safety property, 
and hence, satisfies II = A(Pref(II)). 

We construct an automaton: 

In the other direction, assume that (T is rejected 
by M’. This implies the existence of a minimal 
ut 4 u such that #(q,, d) $ G. Since u’ is mini- 
mal, the run caused by u’ visits only G-states except 
the last. It follows that b’(qo, u’) = 6(qo,u’), and 
hence u’ $ Pref(II). Thus, u’ cannot be the prefix 
of a computation in II, and therefore u 4 II. 
w Consider the case that Il is a guarantee property. 

In that case, we have that lI = E(lI’) for some 
finitary property II’. We define the sets G and B, as 
follows: 

M’ = (Q, qo, T’, G, G), 

where Q and qo are as before. G and B are defined 

by 

G = {qo} u{q E Q 1 2;;;e;&)for ‘Orne }, 
G = {q 1 h(q0, b) = q for some u E II’}, 
B = Q-G. 

B = Q-G. 
Construct the automaton: 

The transition conditions T’ = (t’(q, q’) 1 q, q’ E Q} 
are given by: M’= (Q,qd,GG) 

T qEB> q’=q where Tt is given by: 
ewl’) = F 

{ 
qEB, q’#q 

hq’> q 4 B 
CLd) = F 

We claim that, for a finite computation u E C+, { 

T qEG, q’=q 
qEG,q’#q 

t(q,q’) q 4 G 

u E Pref(II) - Vqo, a> E G. We show that u E C” is accepted by M’ iff cr E II. 

403 



Assume that c is accepted by M’. Then there ex- 
ists some prefix u1 + u which causes M’ to visit a 
state in G for the first time while reading CT. Let 
q = 6’(qo, ~1). Since q is the first visit to a G-state, 
it follows that the behavior of M’ on al is identical 
to that of M on (~1, and therefore also 6(qo, (~1) = q. 
By the definition of G, there exists a finite sequence 
u2 E II’ such that d(qc,az) = q. Let u’ E Cu be the 
suffix of g following ul, i.e., u = ~1. u’. Denote by rl 
the run of M over u = (~1 s u’, and by T-J the run of 
M over us . u’. Obviously, ~1 and T-J can differ only 
by a finite prefix. M accepts u2 . u’ because u2 E II’. 
Since Inf~(rl) = Inf~(rz), M must also accept 
u1 . u’ = u. Thus, u E II. 

Assume that u E II. There must exist a prefix u’ + u 
such that u’ E II’. let u’ be the minimal such prefix 
of a. Let q = 6(qo, u’). Obviously q E G, and q is 
the first G- state that M visits on reading u. It 
follows that also q = 6’(qo, a’). By the way M’ is 
constructed, once it visits a G-state, it stays in G 
forever. Consequently, M’ accepts u. 

n Next, consider the case that II is a recurrenceprop- 
erty. This means that II = R(H) for some finitary 
II’. 

We perform a series of modifications on the indi- 
vidual pairs of sets fi, Pi, i = 1,. . . , h, until all the 
members Pi = 4. These modifications will preserve 
the property defined by the automaton. 

Without loss of generality, we define the modifi- 
cations on the first pair RI, 9. After obtaining a 
Pi = 4, we move on to the other pairs. 

Assume that all the states in the automaton are 
reachable. A cycle C in the automaton is a set of 
states such that there exists a cyclic path in the au- 
tomaton that passes only through the states in C, and 
at least once through each of them. We only consider 
accessible cycles. These are cycles such that the path 
leading from qo to some q in C, and the cyclic path 
traversing C are accessible, i.e., never pass through 
transitions such that t(qi,qj) = F. A good cycle is 
a cycle such that a run r with inf(r) = C is accept- 
ing. A persistent cycle is a good cycle C such that 
c n RI = 4, and hence C C PI. Define A1 to be the 
set of automaton states participating in persistent cy- 
cles . 

Let M be the automaton accepting II with accept- 
ing pairs (Ri, Pi), i = 1,. . . , k, and consider the au- 
tomaton M’ coinciding with M in all but the ac- 
cepting pairs. The list of accepting pairs for M’ is 
(R; , Pi), (Ri, Pi), i = 2, . . . , k, where we define: 

R: = RI u-41 

Pi = $4. 

We wish to show that M and M’ accept precisely the 
same computations. 

Consider first a computation u accepted by M. Let 
J be the infinity set infM(r(u)). Clearly J satisfies 
the requirements presented by (&, Pi), i > 1, in both 
automata. The acceptance for i = 1 implies that ei- 
ther J rl Rr # 4 or J s PI. In the first case obviously 
J n R’, # 4. In the second case, if J n RI = 4, then 
J is a persistent cycle. It follows that J C Al, and 
hence J n R’, # 4. 

Consider next, an infinite computation u accepted 
by M’. We will prove that u is also accepted by M. 
Assume, to the contrary, that u is rejected by M. Let 
J be as before. Since M’ accepts u, J n Ri # C#J. The 
rejection by M imply that J n RI = 4. Hence there 
must be some q E Al in J. Let ?r be a cyclic path 
from q to itself precisely traversing J. In order for 
u to be rejected by M, J must also contain a state 
q’ 9 RI U PI. Since q E Al there must exist another 
cycle J’, such that q E J’, and J’ is a persistent cycle. 
Let ?y’ be the cyclic path from q to itself precisely 
traversing J’. Let u’ a finite computation that causes 
the automaton to move from q back to q along n’. 

The state q and computation u’ have the following 
property: 
For every finite computation 8, such that 6(qo, &) = q, 
there exists a positive integer n (possibly dependent 
on 6) such that &-.(u’)~ contains a prefix u 4 &-.(u’)“, 
) al > 161, which belongs to II’. 

To see this, we observe that the computation 
ii . (u’)~ has J’ as infinity set, and is therefore in 
II. Consequently, 65. (c’)~ must have infinitely many 
prefixes in II’, most of which are longer than 3. The 
shortest of these is a prefix of B . (u’)~ for an appro- 
priate n > 0. 

Let now uc be a computation such that S(qo, u) = 
q, and B a computation leading the automaton from 
q to q along the path A, which precisely traverses J. 
Consider the following infinite computation: 

0” = ~o&(~‘)~l &((q”1 . . . 

where the nj ‘S are chosen so that u” has infinitely 
many prefixes in II’. That is, for each 

up1 = uocqu’)“’ . . * (u’)nj-l& 

we choose an nj > 0 such that uTP1 . (u’)nj has a 
prefix in II’, longer than c$‘-~. 

It follows, on one hand, that since u” has infinitely 
many prefixes in Il’, u” E II. 

On the other hand, the infinity set corresponding 
to a” is J U J’ which has an empty intersection with 
Ri and at least one state q’ 6 PI. This contradicts 
the assumption that M specifies II. 
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Consequently, there cannot exist a computation u 
which is accepted by M’ and rejected by M. 

It follows that M’ is equivalent to M. We can re- 
peat the process for each i = 2,. . . , k until we obtain 
an automaton with all P,! = 4, i = 1,. . . , k. 

It only remains to show that such an automaton is 
equivalent to an automaton with a single R and a sin- 
gle P = 4. This is essentially a closure property that 
states that the intersection of recurrence automata 
is equivalent to a single recurrence automaton. The 
construction is similar in spirit to the formula for the 
intersection of recurrence formulas. The automaton 
detects visits to Rz-states such that the most recent 
previous visit to an RI U Rz-state was in fact a visit 
to an RI-state (for k = 2). 
n The case of a persistence property II that is speci- 
fiable by an automaton is handled by duality. We 
consider ‘iT = Cw - II which can be shown to be a re- 
currence property also specifiable by an automaton. 

By the construction for recurrence properties, there 
exists a recurrence automaton 

M = (Q, QO, T R 4) 

specifying m. The following persistence automaton 
obviously specifies II 

M’= (&,ao,T,hQ- R). 

H The case of reactivity properties specifiable by 
automata is handled as follows. 

Let II be a reactivity property specifiable by the 
automaton 

M = (&,4o,T,{(&,&), i= 1, . . . . k}). 

Clearly the role of the list of pairs (R+, Pi), i = 
1 , k, is to define the subsets J C Q such that 
eikry computation u with inf(r(a)) = J ’ is accepted. 
Let F denote the family of these sets. Obviously, J E 
Fe+(RinJ#t$or J& Pi)foreachi=l,...,k. 

A characterization property that can be derived 
from Wagner [Wag791 (see also [Kam85]) is the fol- 
lowing: 

If M specifies a reactivity property, then for each 
accessible accepting set J E F, 

Either A E F for every accessible cycle A 2 J, 
Or B E F for every accessible cycle B C J. 

An equivalent statement of this fact is that we can- 
not have a chain of three accessible cycles 

BE JcA, 

such that J E F, but B 4 F and A $Z’ F. 

According to this characterization we can partition 
the family of accessible accepting sets into: 

F={&...,A,,& ,... ,Bn), 

where, for each Ai and an arbitrary accessible cycle 
X, Ai G X - X E F and for each Bj, and an 
arbitrary accessible cycle,X, X E Bj - X E F. 

This leads to the construction of the following au- 
tomaton: 

M’ = (Q‘,q&T’,R’,P’) 

Q’=QxQmx2xnx2. 
Each state q’ E Q’ has the following structure: 

4’ = kM1 ,+-dhfR,j,fP), 

where q E Q, qi E Ai, i = 1,. . . , m, f~, fp E (0, 1) 

and 1 5 j 5 n. 
We assume that the states of M are ordered in 

some linear order. For each Ai, i = 1,. . . , m, we 
define min(Ai) to be the state of Ai appearing first 
in the linear order. For q E Ai we define nert(q,Ai) 
to be the first state d E Ai appearing after Q in the 
linear order. If q E Ai is the last Ai-state in the linear 
order then nezt(q,Ai) = min(A;). 

The role of the different components in p’ is as fol- 
lows: 

l The state q simulates the behavior of the original 
automaton. Each qi E Ai anticipates the next Ai- 
state we expect to meet. If the run visits all the 
Ai’s infinitely many times, each anticipated qi will be 
matched infinitely many times. 

l The recurrence flag fn is set to 1 each time one of 
the anticipated Ai-states is matched. 

The index j checks whether the run of M stays 
completely within one of the sets BI, . . . . B, from a 
certain point on. It moves cyclically over 1, . . . . n, and 
at any point checks whether the next automaton state 
is in Bj. If the next automaton state is in Bj, then 
j retains its value and the next value of fp will be 
1. Otherwise, j is incremented (modulo n), and the 
next value of fp is 0. 

qI, = (~0, main (AI), . . . ,~~~(&),O,l,O) 

l T’ is defined as follows: 

A ((?R = 1) = T(@ = qi)) 

i=l 
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fi ( (<nl E Bj) A (? = j>)v 
((G $2 Bj) A (3 = b modm] + 1))) 

A ((fp = 1) = (@E Bj)). 

- The first clause in this definition states that the 
first component q follows the same path that 
would be followed by the original automaton. 

- The second clause states that either the newly 
visited automaton-state @ matches the antici- 
pated state of A;, and then we modify q; to the 
next Ai-state in sequence, or there is no match 
and then qi remains the same. 

- The third clause states that fR is set to one iff t 
matches one of the anticipated states. If different 
from 1 it must be 0. 

- The fourth clause states that if @ belongs to Bj 
then j is preserved. Otherwise it is incremented 
by one in a cyclic manner. 

- The last clause states that fp is set to 1 whenever 
iis in Bj- 

l The acceptance sets are defined by 

R’ = ufL01, . . ..th.fR,ifP) E &’ I fR = 11 

P’ = tk!19 . . ..qm.fR,j,fP) E Q’ I fp = 11. 

Let d be a computation and r’ the corresponding 
run of M’ over u. If r’ visits R’ infinitely many times, 
this implies that r, the run of M over u, visits in- 
finitely many times all the states of some Ai. This 
shows that inf(r) _> Ai and hence u is accepted by 
M as well as by M’. 

If r’ stays contained in P’ from a certain point on, 
it means that the value of j is never changed beyond 
that point and hence r is contained in Bj from that 
point on. Again, this means that u is accepted by M 
as well as by M’. 

As similar argument shows that all computations 
accepted by M are also accepted by M’. J 

5.1 Deciding the Type of a Property 

In this section we consider the following problem: 

Problem 5.1 Given a Streett automaton M, decide 
whether the property specified by this automaton is a 
K-property, where K E {safety, guarantee, obligation, 
recurrence, persistence, reactivity} 

The following proposition gives an answer to this gen- 
eral question: 

Proposition 5.2 It is decidable whether a given 
Streett automaton specifies a property of type tc, 
where rc E {safety, guarantee, recurrence, persistence, 
reactivity). 

Again, for the first types, the answer has been given 
by Landweber in [Lan69]. For the case of reactivity, 
as well as the complete hierarchy below, it is provided 
by Wagner in [wag79]. 

In the context of specification, this question was 
tackled in [AS87], where a decision procedure is given 
for safety and liveness which is not covered by the 
previous results. 

Since the decision procedures for the cases we con- 
sider here are relatively simple, we repeat them below, 
using our terminology. 

First, some definitions. 
A set of automaton states A C Q is defined to be 

closed if for every q,q’ E Q 

q E A A t(q,q’) # F - q’ E A 

The closure a of a set of states is the smallest closed 
set containing A. 

For a given Streett automaton M, we define 

i=l 

Checking for a safety property. 
Let B = Q - G. The automaton M specifies a 
safety property iff 6 n G = q5. 

Checking for a guarantee property. 
M specifies a guarantee property iff 6’ n B = 4. 

To check for the other levels of the hierarchy, we de- 
fine the family of accepting sets F. 

F = (J ] J is an accessible cycle, J n & # 4 or 
JCPiforeachi=l,...,k}. 

The following are direct consequences of the charac- 
terizations in [Wag79]: 

l Checking for a recurrence property. 
M specifies a recurrence property iff for every 
J E F and every accessible cycle A 2 J, A E F. 

l Checking for a persistence property. 
M specifies a persistence property iff for every 
J E F and every accessible cycle B C J, B E F. 

l Checking for a reactivity property. 
M specifies a reactivity property iff there do not 
exist three accessible cycles 

BCJGA 

such that J E F, but B, A $! F. 
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As a matter of fact, the methods of [Wag79j identify 
the exact location of an automaton specifiable prop- 
erty in the reactivity hierarchy, i.e., the minimal k 
such that the property can be specified by a Streett 
automaton with IL1 = k. 

According to the characterization, this minimal k is 
the maximal n admitting a chain of accessible cycles 
of the form 

where B; I$ F and Jr E F for i = 1,. . . , n. 

Connections Between Temporal Logic 
and Automata 

Temporal logic and predicate automata have been 
considered as alternatives for specifying properties of 
programs. A comparison of their expressive power is 
considered next. 

Proposition 5.3 A property that is specifiable by a 
~-formula is specifiable by an K-automaton, for K. 
ranging over the differed types. 

This is based on the following construction, studied 
in [LPZ85] and [ZucSS]. 

For each finite set of past formulae ~1,. . . ,pk it 
is possible to construct a deterministic automaton 
M with a set of states Q and designated subsets 

FI,..., Fk E Q. The automaton M has the property 
that for each i = 1,. . . , k, each infinite computation 
aECW, and each position j 2 0, 

6(qo,u[O-- of) E Fi GT (~,j) I= Pi. 

Thus, the automaton M identifies, while reading u 
up to position j, which pi’s hold at that position. 

Using this basic construction, it is straightforward 
to build a n-automaton corresponding to a K-formula. 

For example, for the reactivity formula 00~1 V 
OOpa, let the automaton mentioned above be 
(Q, qO, ‘2’) with the designated sets Fl and F2. Then 
the corresponding reactivity automaton is 

(Q, qo, T, FI, f’2>. 

In the other direction, not every property speci- 
fiable by an automaton can be specified in tempo- 
ral logic. Only a restricted class of automata, cdled 
counter-free automata (see [MP71]) can be translated 
into temporal Logic. A (Street) automaton is defined 
by be counter-free if there exists no finite computa- 
tion c and a state q, such that q = 6(q,u”) for some 

n > 1 but 6(g, u) # q. The existence of such Q and 
u would have enabled the automaton to count occur- 
rences of u modulo n. 

It has been shown in [Zuc86] that: 

An automaton specifies a property specifi- 
able by temporal logic iff it is counter-free. 

This result can be refined to provide a translation 
from counter-free R-automata to K-formulae. 

Proposition 5.4 A property that is specifiable by 
a counter-free tc-automaton is specifiable by a n- 
formula. 

The translation is essentially the one studied in 
[Zuc86], but showing that the structure required in 
a K-automaton corresponds to the structure required 
in a K-formula. 

It is based on the construction of a past formula po4 
for each q E Q - {qo} of a given counter-free automa- 
ton table (Q, qo, 7’). The formula ‘pp characterizes all 
the finite computations leading from qo to q, i.e., for 
each infinite computation u E C” and position j > 0, 

6(qo, 4O.41) = Q - (u,j) != Pq. 

For example, the formula corresponding to the 
(counter-free) reactivity automaton (Q, qo, T, R, I’} is 

The above two ways translation, subject to 
counter-freedom, provides a standard reduction of re- 
sults about automata into the corresponding results 
about temporal logic. We can use this reduction to 
prove the other direction of the claim relating the 
temporal classes to their semantic specification. 
We illustrate this method on the following part of the 
proposition. 

A reactivity property II that is specifiable by 
temporal logic, is specifiable by a reactivity 
formula. 

Proof 
Let p be the formula specifying II. Using the trans- 

lation described in proposition 5.3, we construct a 
counter-free automaton M ‘p, specifying the reactiv- 
ity property II. Using the construction described in 
proposition 5.1 for the case of a reactiyity property, 
we construct a reactivity automaton M that speci- 
fies the same property. The construction of fi only 
refines the structure of M,, splitting each state of 
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M, into many distinct states, respecting the transi- 
tions. It follows that since M, is counter-free so is 
&. We can now use the translation from counter-free 
automata to temporal formulae, described in propo- 
sition 5.4, to construct a reactivity formula 9~ spec- 
ifying II. 

This method was used in [Zuc87] to establish 
the strict hierarchy for temporal formulae, based on 
[Kam85]. 

References 

[AS851 B. Alp ern and F.B. Schneider, Defining 
liveness, Info. Proc. Lett. 21, 1985, pp. 181- 
185. 

[AS873 B. Alpern and F.B. Schneider, Recognizing 
safety and liveness, Dist. Comp. 2, 1987, 
pp. 117-126. 

[AS891 B. Alp ern and F.B. Schneider, Verifying 
temporal properties without temporal logic, 
ACM Bans. Prog. Lang. Sys. 11, 1989, 
pp. 147-167. 

[Kam85] M. Kaminski, A classification of w-regular 
languages, Theor. Comp. Sci. 36, i985, 
pp. 217-229. 

[Lam771 

[Lam831 

[Lan69] 

[LPZ85] 

[Man741 

[MP71] 

[MP83] 

L. Lamport, Proving the correctness of mul- 
tiprocess programs, IEEE Trans. Software 
Engin. 3, 1977, pp. 125-143. 

L. Lamport, What good is temporal logic, 
Proc. IFIP 9th World Congress (R.E.A. 
Mason, ed.), North-Holland, 1983, pp. 657- 
668. 

L.H. Landweber, Decision problems for 
w-automata, Math. Sys. Theory 4, 1969, 
pp. 376-384. 

0. Lichtenstein, A. Pnueli, and L. Zuck, 
The glory of the past, Proc. Conf. Logics 

of Programs, Let. Notes in Comp. Sci. 193, 
Springer, 1985, pp. 196-218. 

Z. Manna, Mathematical Theory of Compu- 
iation, McGraw-Hill, 1974. 

R. McNaughton and S. Papert, Counter 
Free Automata, MIT Press, 1971. 

Z. Manna and A. Pnueli, How to cook a 
temporal proof system for your pet lan- 
guage, Proc. 10th ACM Symp. Print. of 
Prog. Lang., 1983, pp. 141-154. 

[MP84] 

[MP87] 

[MPSSa] 

fMP89b] 

[tiL82] 

[Pnu77] 

[Ftab72] 

[SisSS] 

[Str82] 

WOI 

[Wol83] 

[Zuc86] 

[Zuc87] 

Z. Manna and A. Pnueli, Adequate proof 
principles for invariance and liveness prop- 
erties of concurrent programs, Sci. Comp. 
Prog. 32, 1984, pp. 257-289. 

Z. Manna and A. Pnueli, Specification and 
verification of concurrent programs by V- 
automata, Proc. 14th ACM Symp. Print. 
of Prog. Lang., 1987, pp. 1-12. 

2. Manna and A. Pnueli, The anchored 
version of the temporal framework, Lin- 
ear Time, Branching Time and Partial Or- 
der in Logics and Models for Concurrency 
(J.W. de Bakker, W.-P. de Roever, and G. 
Rozenberg, eds.), Let. Notes in Comp. Sci. 
354, Springer, 1989, pp. 201-284. 

Z. Manna and A. Pnueli, Completing the 
temporal picture, Proc. 16th Int. Colloq. 
Aut. Lang. Prog., Let. Notes in Comp. Sci. 
372, Springer, 1989, pp. 534-558. 

S. Owicki and L. Lamport, Proving liveness 
properties of concurrent programs, ACM 
Tmns. Prog. Lang. Sys. 4, 1982, pp. 455- 
495. 

A. Pnueli, The temporal logic of programs, 
Proc. 18th IEEE Symp. Found. of Comp. 
Sci., 1977, pp. 46-57. 

M.O. Rabin, Automata on Ifinite Objects 
and Churc’s Problem, Volume 13 of Re- 
gional Conference Series in Mathematics, 
Amer. Math. Sot., 1972. 

A.P. Sistla, On caracterization of safety and 
liveness properties in temporal logic, Proc. 
4th ACM Symp. Print. of Dist. Comp., 
1985, pp. 3948. 

R.S. Streett, Propositional dynamic logic of 
looping and converse is elementarily decid- 
able, Inj. and Cont. 54, 1982, pp. 121-141. 

K. Wagner, On w-regular sets, 1nj. and 
Cont. 43, 1979, pp. 123-177. 

P. Wolper, Temporal logic can be more ex- 
pressive, Inf. and Cont. 56,1983, pp. 72-99. 

L. Zuck, Past Temporal Logic, Ph.D. thesis, 
Weizmann Institute, 1986. 

L. Zuck, Manuscript, 1987. 

408 


