
A Hierarchy of Temporal Properties *

Zohar Manna
St anford University t

and
Weizmann Institute of Science+

Abstract

We propose a classification of temporal properties
into a hierarchy. The classes of the hierarchy are char-
acterized through four views: a language-theoretic
view, a topologica1 view, the temporal logic view, and
an automata view. In the topological view, the con-
sidered hierarchy coincides with the two lower lev-
els of the Bore1 hierarchy, starting with the closed
and open sets. For properties that are expressible by
temporal logic and predicate automata, we provide
a syntactic characterization of the formulae and au-
tomata that specify properties in the different classes.
We relate this classification to the well known safety-
[iweness classification, and show that in some sense
the two are orthogonal to one another.

1 Introduction

This paper deals with some methodological aspects
of the development of correct reactive systems. Fieac-
tive systems are systems (and programs) whose main

*This research was supported in part by the National
Science Foundation under grants CCR88-12595, CCR-89-
11512, and CCR-89-13641; by the Defense Advanced Re-
search Projects Agency under contract N00039-84C-0211, by
the United States Air Force Office of Scientific Research un-
der contracts AFOSR90-0057 and 880281, and by the Euro-
pean Community ESPRIT Basic Research Action project 3096
(SPEC).

tDepartment of Computer Science, Stanford University,
Stanford, CA 94305

t Department of Applied Mathematics, Weizmann Institute,
Rehovot, Israel

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or dkributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0377 $1.50

Amir Pnueli
Weizmann Institute of Science*

role is to maintain an ongoing interaction with their
environment, rather than to produce some final re-
sult on termination. Such systems should be specified
and analyzed in terms of their behaviors, i.e., the se-
quences of states or events they generate during their
operation. The class of reactive systems includes prG
grams such as operating systems, programs control-
ling industrial plants, embedded systems, and many
others. It is clear that it includes also the classes of
concurrent and distributed programs since, indepen-
dently of the goal and purpose of the complete sys-
tem, each component of the system has to be studied
in terms of the interaction it maintains with the other
components.

A reactive program may be viewed as a generator
of computations which, for simplicity, we may assume
to be infinite sequences of states or events. In the
case that the program does terminate, we may always
extend the finite computation it has generated by an
infinite sequence of duplicate states or dummy events
to obtain an infinite computation.

In general, we define a property as a set of compu-
tations. A program P is said to have the property
II if all the computations of P belong to II. Sev-
eral languages and formalisms have been proposed
for expressing properties of programs, including the
language of temporal logic [Pnu77, Lam831 and the
formalism of predicate automata [AS89, MP87].

An important approach to the specification and
verification of reactive systems is based on specifying
a program by listing several properties, representing
requirements that the program ought to satisfy. This
approach enjoys the advantages of abstraction and
modularity. By abstraction we mean that since the
specifier lists separate properties and is not required
to show how they can be integrated or worry about
how they interact with one another, he is not tempted
to overspecify or actually design, the system. Conse-
quently, this approach leads to specifications which
are considerably free of implementation bias.

377

By modularity we mean that a property-list based
specification is very easy to modify by dropping,
adding or modifying a single property. Also, the pro-
cess of verifying that a proposed implementation sat-
isfies its specification can be done in a modular fash-
ion, by verifying each property separately.

One of the major drawbacks of the property based
approach to specification is that, while it discourage
overspecification, it may in some cases lead to un-
derspecification. Thus, a constant concern in working
with such specifications is that of completeness: Have
we specified enough properties to guarantee that any
implementation will be close enough to our intuitive
intent?

A classical example of underspecification is a spec-
ification for a mutual exclusion algorithm that spec-
ifies the obvious requirement that no two processes
reside in their critical sections at the same time, but
forgets to require that each interested process will
eventually get access to its critical section. A trivial
but obviously unsatisfactory implementation of this
faulty specification is one in which no process ever
gets to the critical section.

A partial remedy to the completeness problem can
be provided by a deeper study and detailed cIassifica
tion of the different types of properties. This can at
least provide the specifier with a check list of proper-
ties that he should consider. For each of the proper-
ties types he can ask himself the questions: Is there
a property of this type that is relevant to the system
I am specifying? Have I already specified it?

A useful and important partition of properties into
the classes of safety and heness properties has been
suggested by Lamport in [Lam77]. The two classes
have been informally characterized as:

l A safety property states that some bad thing
never happens.

l A liveness property states that some good thing
eventually happens.

An important advantage of this classification is that
each class encompasses properties of similar char-
acter. Safety properties typically represent require-
ments that should be continuously maintained by the
system. They often express invariance properties of
the system. For example, if the bad thing represents
violation of a mutual exclusion requirement, then the
statement that it never happens ensures that mutual
exclusion is continuously maintained. Liveness prop-
erties, on the other hand, typically represent require-
ments that need not hold continuously, but whose
eventual (or repeated) realization must be guaran-
teed. For example, if the good thing represents the

situation that a process enters its critical section, then
the statement that it eventually happens guarantees
the absence of a livelock (or individual starvation).

Thus, we can immediately identify the fault with
the incomplete specification considered above as miss-
ing the appropriate liveness property. With the addi-
tion of this property, the specification becomes com-
plete, and admits only satisfactory solutions.

To draw an analogue from terminating programs,
safety properties correspond to partial correctness,
which does not guarantee termination but only that
all terminating computations produce correct results.
Liveness properties correspond to total correctness
which also guarantees termination. For reactive sys-
tems, which may never terminate, the spectrum of
relevant and useful liveness properties is much richer
than the single property of termination. For exam-
ple, it also includes the guarantee that a certain event
occurs infinitely many times.

While it is generally recognized that a complete
specification of a system should include both a safety
and a liveness part, there is an additional cost in a
language that can express both classes of properties.
For example, if we are ready to restrict ourselves to
expressing only safety properties, then the relatively
simpler language of predicates over finite behaviors
(or finite prefixes of infinite behaviors) suffices. The
only justification for using temporal logic or equiva
lent formalisms, which are considerably more complex
since they define predicates over infinite behaviors,
is for expressing liveness properties. Thus a major
justification for studying the classification of proper-
ties is to identify the tradeoff between completeness
and expressibility of the specification language and
its complexity.

Another reason for wishing to distinguish between
the two classes is that their verification calls for dif-
ferent proof approaches. To prove safety properties
one uses essentially compuialional induction (using
the terminology of [Man74]), based on an invariance
principle. According to this principle, to establish a
safety or an invariance property, we show that it holds
initially and that it is preserved by each individual
action of the program. Consequently, based on an in-
duction argument on the position in the computation,
it follows that the property always holds. Note that
the inductive argument appears only in the justifica-
tion of the proof principle, but not in its application.
That is, the user of the principle only establishes the
two facts mentioned above, i.e., initial validity and
preservation over the program steps. Thus the in-
duction is implicit.

Liveness properties, on the other hand, are proven
using structural induction, i.e., explicit induction on

378

some function of the state, that measures the distance
away from the realization of the “good thing”. This
induction is often represented as an application of a
well-founded argument. We refer the reader to [OL82,
MP84] for a discussion of the unique proof principles
associated with each class.

A more formal definition of the semantic nature of
safety properties has been given in [Lam83], and a
semantic characterization of liveness properties has
been given in [AS85]. These two formal definitions
lead to the following pleasing consequences:

l The classes of safety and liveness properties are
disjoint (except for the trivial properties of the
empty sets and set of all computations).

l Every property can be represented as the inter-
section of a safety property and a liveness prop-
erty.

l The classes contain the obvious properties that
are intuitively associated with them, i.e., invari-
ance and partial correctness in the safety class,
and termination and absence of individual star-
vation in the liveness class.

l All the properties classified as safety proper-
ties can be proven using an invariance principle,
while the properties classified as liveness proper-
ties can be proven using a well-founded principle.

Alpern and Schneider (see [AS89, AS87j) studied this
classification in terms of predicate automata, a topic
we will cover in a later subsection. They provided
syntactic characterization of the two classes by impos-
ing structural constraints on the automata describing
such properties.

Unfortunately, the situation is somewhat less sat-
isfactory when we try to give a syntactic characteri-
zation of these two classes in terms of the temporal
logic formulae expressing them. Sistla gave in [Sis85]
a syntactic characterization of the safety cla.ss. He
also gave some characterizations of some subclasses
of the liveness class, which however do not cover the
full class.

In this paper we present an alternative classifica-
tion of properties, to which we refer as the Bore/
classification. The name is justified by the corre-
spondence we show between this classification and
the lower two levels of the classical Bore1 topologi-
cal hierarchy.

The Bore1 classification agrees with the safety-
liveness (SL) classification on the identification of the
class of safety properties. It differs from the SL clas-
sification on the other classes. Unlike the SL clas-
sification, the Bore1 classification is a hierarchy and

not a partition. This means that some non-safety
classes properly contain the class of safety proper-
ties. The situation is similar in that respect to the
hierarchy of formal languages where, for example, the
class of context-free languages properly contains the
class of regular languages. We have to designate a
language as strictly context-free in order to identify
it as context-free but not,regular.

It is possible to argue that the main advantages
attributed above to the safety-liveness classification,
namely, the need for more complex specification lan-
guage and different proof principle for the liveness
class, are due to the distinction between the safety
and the non-safety classes, The Bore1 classification
also makes such a distinction, but in addition pro-
vides a finer classification of the non-safety classes.
This classification enables us to distinguish between
properties stating that a certain good thing occurs at
least once, and properties stating that a certain good
thing occurs infinitely many times in the computa-
tions.

We examine the Bore1 classification from four
points of view. The first view is linguistic (language
theoretic), where we characterize the different classes
according to the way they can be constructed from
languages of finite sequences. The second view is
topological, where we characterize the classes as sets
with particular topological properties. This is where
we establish the correspondence with the Bore1 topo-
logical hierarchy. Next, we consider properties which
are expressible in temporal logic, and give for each
class a syntactic characterization of the formulae that
express properties belonging to that class. Finally, we
consider the expression of properties by predicate au-
tomata, and give syntactic characterization of the au-
tomata describing properties belonging to each class.
We show that these four views of the hierarchy co-
incide. In the last section dealing with the program
part of the proof system, we will indicate some unique
proof principles that correspond to particular classes.

A hierarchy, very similar to the one considered
here, has been studied extensiveiy in the context of
automata over infinite words, which is the fourth view
we consider. The properties of the lower ranks of the
hierarchy, which are our main subject of interest, have
been established by Landweber in [Lan69]. The com-
plete hierarchy has been analyzed in [Wag79], and
several years later in [Kam85]. They have also es-
tablished the connection to the topological charac-
terization. Consequently, many of the technical re-
sults described in the section on automata have been
established in these two works. The similar results
about temporal logic can usually be derived from the
automata results by restriction to non-counting au-

379

tomata ([ZucSS]).
Parts of this paper have appeared in other places.

Some of the main results have been presented in
PODC87, but the proceedings of that year contains
only an abstract. Other parts have appeared in
[MP89a].

2 The Linguistic View

In this paper we take an abstract view of the states
that a program may assume, the computations that
a program may generate, and of the properties that
programs may possess. We consider a fixed set of
states C, with no assumptions about their internal
structure. Computations will correspond to infinite
sequences of states. Obviously, a property is a pred-
icafe on such sequences. It judges some sequences
to be acceptable (having the property) and other se-
quences as unacceptable (not having the property).
Thus, each property uniquely defines a characteris-
tic set of sequences which are precisely the sequences
that have the property.

This leads to a most abstract view of a property as
a set of infinite sequences. We denote by C’ the set
of all finite sequences of states in C, and by C+ the
set of all non-empty finite sequences of states. Let Cw
denote the set of all infinite sequences of states, and
c M = C+ U C” the set of all non-empty finite and
infinite sequences of states.

As suggested above, we view a property as any
set of sequences. Another name for such a set is a
language over the alphabet C. In formal language
theory, it is customarily required that the alphabet
be finite. However, the extension to infinite alpha-
bets is straightforward. We will therefore consider
the terms property and language to be synonymous.
Consistently with this terminology, we will refer to
sequences as words.

Consider, for example C for a particular program to
consist of states assigning integer values to the vari-
able z. Let II be the property requiring that

The value of z is monotonically increasing.

Then the property defines a characteristic set, which
we also denote by II, such that the sequence

(3 : 0),(x: 2),(2: 3),...

belongs to II, while the sequence

(x : 0),(x: 2),(2: l),...

does not.
We introduce the following special cases of proper-

ties. A set Q C_ C+ of non-empty finite words is called

a finitary property. A set II c Cw of infinite words
is called an infinitary property. Clearly, our ultimate
interest is in the infinitary properties, as all compu-
tations are infinite sequences of states. However, the
theory of infinitary properties makes extensive use of
finitary properties as the building blocks from which
infinitary properties are constructed.

For a finite word Q E C+ and a word u’ E Coo, we
denote by u 4 u’ the fact that (I is a proper finite
prefix of CT’, i.e., a prefix that differs from u’. We
denote by (T 3 a’ the more general relation (a 4
a’) V (u = Q’ E C+) , still requiring Q to be finite.
The word u .u’ is obtained by concatenating u’ to the
end of cr. It is defined only if u is finite.

For a property II E C”, we denote by Pref(II)
the set of all finite prefixes of II.

We define the complements of a finitary property @
and of an infinitary property II, denoted respectively
by q,n, as

&c+-+, iT=cw--HI.

The classification of properties in the linguistic
view is based on the following question: How can
we construct infinitary properties fromfinitary ones?
The underlying assumption is that fmitary propert ie~
are easy to understand and handle, but we want 1.2
study carefully the construction of infinitary proper-
ties.

We propose four operators for the construction of
infinitary properties form finite ones. They are de-
noted by A, E, R, and P, respectively. We present
below the definition of the properties that are ob-
tained by applying the operators to a given finitary
property a. We will illustrate these definitions on
simple cases, which are described by the notation of
regular expressions, extended by the notation +” that
denotes the infinite product of the language a. Thus,
the language a“’ consists of all the infinite words that
can be presented as the infinite concatenation

uo ’ Ul * II72 - * . ,

where each ui is a finite non-empty word belonging
to a.

l The property A(Q) consists of all the infinite
words cr, such that

All prefixes of u belong to a.

For example, if Cp = a+b*, then A(O) = uw +
a+bw.

l The property E(a) consists of all the infinite
words u, such that

380

There ezi&s a prefix of u that belongs to a.

For example, E(u+b*) = a+b* . Y’. In fact, it is
true for every finitary property Cp that E(a) =
ip*c”.

l The property R(Q) consists of all the infinite
words u, such that

Infinile/y many prefixes of o belong to Cp.

For example, R(C*b) = (C*b)W. This language
contains all the words that have infinitely many
occurrences of b.

l The property P(Q) consists of all the infinite
words u, such that

All but finitely naany prefixes of Q belong to 0.

For example, P(C’b) = C’b”. This language
contains all the words that from a certain point
on contain only occurrences of b.

The reason for denoting the two last operators by the
letters R and P is that prefixes belonging to Q occur
recurrently in R(O), and persistently (from a certain
point on) in P(a).

For some of the developments below, it is useful to
define the finitary versions of the operators A and E.
Let @ be a finitary property. we define

l Af (0) is the set of all finite words cr, such that

All prefixes of u are in @.

l Ef(+) is the set of all finite words b, such that

There e&is a prefix of u that belongs to a.

To illustrate the difference between the operators
A, E and their finitary versions, consider the following
examples

A,(a+b*) = a+b* A(a+b*) = uw + a+bw
E,(a+b*) = u+b* . C* E(u+b*) = a+b* . C”

The four operators are not completely independent.
In fact A and E are dual operators, and so are R and
P.

The meaning of duality between A and E is that
they satisfy the equalities

A(@) = E(q) and ??@) = A(s).

where complementation is taken with respect to C+
for 0, and with respect to Cw for A(@) and E(Q).

Similar duality relations hold for the finitary ver-
sions of these operators.

Af w = Em and EJ (@) = AJ (5).

Let us show, for example, that the equality A(@) =
E@) holds. Clearly u E A(*) iff all prefixes of (T
belong to 0. Consequently u 6 A(@) iff there exists
at least one prefix of (r, call it u’, that does not belong
to a. This means that u has a prefix, namely u’, that
belongs to 3, which is true iff u E E(T).

The duality between R and P is given by the equal-
ities

R(Q) = P@) and P(Q) = R@).

Based on these four operators we define four basic
classes of infinitary properties.
An infinitary property II is defined to be

A safety property if Il = A(+) for some finitary
a. That is, all prefixes of a word u E II belong
to 0.

A guarantee property if II = E(a) for some fini-
tary a. That is, each word u f II is guaranteed
to have some prefix belonging to i9.

A Pecurrence property if II = R(Q) for some fini-
tary 0. That is, each word u E II has recurrently
(infinitely many times) prefixes belonging to a.

A persistence property if II = P(a) for some
finitary a. That is, each word u E II has per-
sistently (continuously from a certain point on)
prefixes belonging to (9.

We apologize to our readers for the frequent changes
in the names we give to the classes (compare, for
example, with the names appearing in [MP89b]).
At least the definitions and characterization of the
classes remain the same.

It follows, for example, that the properties (I“’ +
a+b“‘,a+b* . lF’,(C*b)“, and C*b”, are safety, guar-
antee, recurrence, and persistence properties, respec-
tively.

If we interpret the “good” and “bad” things that
are mentioned in Lamport’s informal definition as sit-
uations or occurrences that can be detected in finite
time, then they must correspond to finitary proper-
ties. Consequently, we can view the four classes de-
fined above as making different claims about the fre-
quency of occurrences of “good” things. According to
this interpretation, safety, guarantee, recurrence, and
persistence claim, respectively, that a “good” thing
occurs always, at least once, infinitely many times, or
continuously from a certain point on.

381

Duality of the Classes

A direct consequence of the duality between the oper-
ators A and E, and between the operators R and P,
is a
can

0

corresponding duality between the classes. This
be expressed by

II is a safety property iff i7 is a guarantee prop-
erty.

II is a recurrence property ifT n is a persistence
property.

Closure of the Classes

Next, we show that each of the four basic classes is
closed under the positive boolean operations, namely,
union and intersection. We will consider each class in
turn.

Closure of the Guarantee Class

Let E(01) and E(&) be two guarantee properties.
We wish to show that their union is also a guarantee
property. This is based on the equality

E(@I) u E(Q2) = E(@I u @2),

which appears even more convincing when we write
@a E“’ for E(a). In this representation, the equality
above assumes the form

Next, consider the case of intersection. Here, we
base our argument on the equality

which can easily be verified. Expressing this equality
in terms of the operators E and Et, we obtain

E(‘h) n E(*2) = E(Ej(*d n Q(Q2)).

This shows that the intersection of two guarantee
properties can be expressed the application of the op-
erator E to the finitary property Ej (@I) 13 Ef(Gz). It
follows that the intersection is also a guarantee prop-
erty.

Closure of the Safety Class

The closure of the safety class under intersection and
union is established by the following two equalities,
that can be derived by duality from corresponding
equalities for the guarantee class.

4%) II A(Q2) = 4% II a,)

4%) u -4(@2) = A(A/(%) u 4(@2)).

Closure of the Recurrence Class

We consider first the simpler case of union. It is not
difficult to see that

R(%) u R(&) = R(<P1 u Cpz).

This equality states the obvious fact that a word
u contains either infinitely many al-prefixes or in-
finitely many @z-prefixes iff u contains infinitely
many 01 U &-prefixes.

For the more difficult case of intersection, we intro-
duce the following definition.

Let 01 and a2 be two finitary properties. We de-
fine the minimal ezlension of a2 over 01, denoted by
minez(iP1, Q2), to be the set of words cr2 E Q2, such
that

There exists a word ~1 E $1, such that ~1 + u2,
i.e., 62 is a proper @-extension of ul, ana

There is no 6: E & such that ~1 + us 4 ~2, i.e.,
o2 is a minimal proper Q2-extension of ul.

Clearly, minez(Ql, cPz> E Q2, and is therefore a fini-
tary property.

As an example, let @I = (a”)+ and a2 = (a”)+.
Then minez(al,Qz) is equal to (&)*a2 + (a6)*u4.
On the other hand,
(a6)*2 = a,.

minez((a2)+, (a”)+) = (06)+ +

Now we can express the effect of intersecting two
recurrence properties as

R(@l) n R(49) = R(minez(%, %)).

We show inclusion in the two directions. Consider
an infinite word u E R(@I) rl R(iP2). Let ud -X u: +
u; 4 . - - be the sequence of al-prefixes in u. For each
i=O,l,... let a: be the shorted &prefix of u that
properly contains u’. CIearly, uf E minez(cP1, Q2)
and there are infinitely many of them. It follows that,
u E R(minez(iP~,cP2)).

In the other direction, assume that u E
R(miner(Q1, a~)). Let u$ -X uf 4 ui 4 . . . be
the sequence of minez(+l , &)-prefixes in u. Clearly,
by the definition of miner, each of them belongs
also to &, which shows that u E R(Qi2). For each
i = 0, 1,. . ., let ui be the longest proper al-prefix of
uz. Fromthe definition of minimal extension is fol-
lows that, for each i = 0, 1, . . ., a? is the minimal
On-extension of ul. Obviously, ug 5 u: -< ui 5 . . .
but it remains to show that the containment is strict.
Assume it is not, and let uj’ = u;+~ for some j. Then
we have the relations

382

These show that a;+1 is not the minimal proper @z-
extension of c$+,, contrary to the definition of ajl. It
follows that the sequence 6: 4 cri 4 ci 4 . . . contains
infinitely many distinct elements, and therefore cr E
R(W

Closure of the Persistence Class

Here we utilize duality to derive the following equal-
ities which show the closure of the persistence class
under intersection and

P(@lg l-l P(%>

P(@l) u P(W

union.

Characterization of the Classes

Our definition of the classes is constructive. This
means that we have shown how each of the classes
can be constructed by applying the operators A, E,
R, and P to finitary properties. In some cases this
definition is not easy to apply directly. Consider, for
example, the question: How do you show that the
property (u + ,)*b, is not a safety property? Going
back to the constructive definition, we have to show
that there cannot exist a finitary property @, such
that (u + ,)*b“ = A,(+). On the face of it, this does
not seem to be an easy task.

It is therefore very helpful to derive some additional
characterization for some of the properties, which
are independent of the constructive definition. We
present such characterization for the lower classes of
safety and recurrence.

Claim

An infinitary property Il is a safety property
iff

H = A(Pref(n)).

Consider first the if direction. Clearly, Pref(II) is a
finitary property, and therefore, if II = A(Pref(II))
then, by the constructive definition II is a safety prop-
erty.

Next, consider the only if direction. It is easy to
see that II 2 A(Pref(KI)), since for any word c E II,
all the prefixes of c belong to Pref(II).

By the assumption that II is a safety property it can
be presented as II = A(Q) for some finitary a. By the
definition of the A operator it follows that Pref(II) &
a. Applying the operator A, which can be shown
to be monotonic, to both sides of this inclusion, we
obtain A(Pref(ll)) C A(@) = Il. This establishes
the other direction of the equality.

We may now use the characterization claim to show
that (~*b)~ is not a safety property. A simple calcu-
lation yields Pref((a*b)“‘) = (u+b)+, from which we

get

A(Pref((u*b)w)) =

A@ + v+) = (a+ by # (u*lJy.

We refer to the operator A(Pref(II)), applied to an
arbitrary property II, as the safety closure of II. Thus
the claim above can be reformulated by saying that
an infinitary property II is a safety property iff lI
equals its safety closure.

By duality we can immediately obtain a character-
ization of the guarantee class.

Claim

An infinitary property If is a guarantee
property iff

II = E(Pref@)).

Note that the complement of II should be taken with
respect to C”, while the complement of Pref(n)
should be taken with respect to C+.

Inclusion among the Classes

Another interesting relation among the classes is that
of inclusion, which arranges the classes of properties
in a hierarchy. The two classes of recurrence and
persistence properties are higher’up in the hierarchy
in the sense that they properly contain the classes of
safety and guarantee.

Recurrence contains Safety and Guarantee

To show containment of the safety class in the recur-
rence class, we have to show that any safety property
II = A(@) can be presented as a recurrence prop-
erty, i.e., as the application of the operator R to some
finitary property. This is easily accomplished by the
equality

This equality states that all prefixes of u are in @ iff
u has infinitely many prefixes u’, such that all the
prefixes of u’ are in a.

To show that the containment is strict it suffices
to consider the property (a*b)w, which consists of all
words whose states are either a or b, but have an
infinite number of b’s. It is easily seen that (a*b)”
is a recurrence property, as it can be presented as
R((u*b)+). On the other hand, as shown above, this
property is not a safety property.

383

TO show that any guarantee property, presentable
asrI = E(a), is also a recurrence property, we use
the equality

E(a) = NJWW *

It is easy to agree to the equality once we represent
the operators E in their equivalent form

0 - cw = (@ ’ c*> * C”.

To show that the inclusion is strict, we use again the
property (a’b)” that has already been shown to be
a recurrence property. It only remains to show it is
not a guarantee property, using the appropriate char-
acterization claim. For simplicity, we assume that
c = {c&b}.

E(m) = E(Pref((a + b)*&))

= E(m) = E(4) = q5 # (a’b)?

Persistence contains Safety and Guarantee

By duality, we can use the previous results to show
that any safety and guarantee properties are pre-
sentable as persistence properties. The equalities on
which these presentations are based are

A(+) = P(AfW)

EC@) = %w@9).

To show the strictness of the containment we may
use the property complementing the property used
before. This is the property (a + b)*&. It is easy to
present it as a persistence property by the expression
P((a + b)*a+). On the other hand, using the charac-
terization claims for the safety and guarantee classes,
it can easily been shown that this property belongs
to neither of these classes.

The Compound Classes

The four classes we have introduced are considered
to be the basic classes. As we have seen, each of
the basic classes is closed with respect to the positive
boolean operations of union and intersection, but tak-
ing the complement moves us from each class to its
dual (safety f-, guarantee.and recurrence w persis-
tence).

There are two additional classes, to which we refer
as the compound classes, that can be obtained by
taking unrestricted boolean combinations of the basic
classes.

The Obligation Class.

This class can be defined by three equivalent
statements as the class obtainable by

= Unrestricted boolean combinations of safety
properties, or

n Unrestricted boolean combinations of guar-
antee properties, or

n Positive boolean combinations of safety and
guarantee properties.

The Reactivity Class.

This class can be defined as the class obtainable
by unrestricted boolean combination of either re-
currence properties alone, or persistence proper-
ties alone. Alternately, all properties of the reac-
tivity class can be obtained by positive boolean
combinations of both recurrence and persistence.

The definitions above display an obvious tradeoff be-
tween using unrestricted boolean combinatSions of a
single class or using positive boolean combinations of
a ciass and its dual.

A typical obligation property is given by the ex-
pression a* bw + C* . c. C” which represents a union of
the safety property a*bw and the guarantee property
c*.c.cw.

We will study some of the properties of the obliga-
tion class.

The Obligation Class

The obligation class obviously contains both the
safety and guarantee class. By examining the prop-
erty a* b” + C’ . c. C” we see that this containment is
strict since this property is neither a safety property
nor a guarantee property.

To justify the name given to this class, consider the
property defined by

II : A(s) u E(Q).

Each word u belonging to this property, either has
all of its prefixes taken from i or has at least one
prefix taken from Q’. Consequently, if c has a prefix
belonging to @ it must also have a prefix belonging to
q. Thus, this property represents a conditional obli-
gation that the word will contain a q-prefix if it con-
tains G-prefix. In comparison, the guarantee property
E(Q) represents an unconditional guarantee that the
word will contain a Q-prefix. The more general prop-
erty ni(A(c) U E(9i)) represent the multiple obli-
gation to have a XI?;-prefix for every i for which the
word contains a @i-prefix.

384

The obligation class is obviously closed under all
three boolean operations. Using the third version
of the definition, we can use the distributive rule
to bring any boolean combination into a conjunctive
normal form

n

m .
nt,u... . . urI;-,uII~u.. * u G-&

i=l

where II!, . . . , I$.., are safety properties, and
r$,...,II~-l are guarantee properties. Using now
the closure of the safety and guarantee classes under
union, we can replace the union II; U . . . U 11~-1 by a
single safety property II’,, and the union I$ U . m - U

l-r’ m--l by a single guarantee property II&. It follows
that any obligation property can be represented as
the intersection

h (A(%) u E(%)),
i=l

for some n > 0, and Unitary properties
al, 91,. . . , a,,, Q,. We refer to this presentation as
the conjunctive normal form of obligation properties.

In a completely symmetric way we can present each
obligation property in a disjunctive normal form

I,) (A(Qi) II E(Qi)).
is1

For most of our applications we will mainly use the
conjunctive normal form.

Any of these forms introduces an internal strict hi-
erarchy within the class of obligation properties. We
define the subclass Oblk, for k = 1,. , ., to consist of
all the properties that have a conjunctive normal form
representation with n = k. It is not difficult to see
that Oblk E Oblk+l. This is due to the fact that we
can always add the trivial conjunct A@+) U E(C+)
to a conjunction of k terms and transform it into a
conjunction of k f 1 terms.

Less obvious is the fact that this is a strict hierar-
chy. To present a canonical example that establishes
this fact we introduce the following definitions. For
a property III, that may contain both finite and infi-
nite words, and a property IIZ, we define the product
II1 .II2 to consist of all the infinite words of 111 and all
the words glV ~72 for a finite ~1 E II, and any u2 E II2.

Let C = {a,b,c,d}. DefineII = a”+(a+b)*-c-P’.
Then the property

[(II + a*)alk-l . l-I,

for k > 0, belongs to 0611, but to no lower Oblk,,
k’ < k.

A similar hierarchy can be defined based on a
disjunctive, rather than a conjunctive normal form.
Note that in both hierarchies, the safety and guar-
antee properties belong to the lowest subclass Obll,
to which we refer as the subclass of simple obligation
properties.

The last property of the obligation class we wish to
discuss is its strict containment in both the recurrence
and persistence classes. observe that the definition of
obligation properties as a positive boolean combina
tion of safety and recurrence properties can be recast
into an inductive definition as follows.

l Every safety property is an obligation property.

l Every guarantee property is an obligation prop-
erty.

l If II, and & are obligation properties, then so
are II1 U II2 and IIt 17 n2.

Based on this definition, it is easy to prove by induc-
tion that every obligation property is a recurrence
property. This is because every safety property and
every guarantee property are recurrence properties,
and the union and intersection of recurrence proper-
ties are, again, recurrence properties. To show that
containment is strict, we may use again the property
b*QW, which is a recurrence property bu.t can be
shown not to be an obligation property.

An identical argument shows that the obligation
class is contained in the persistence class. The prop-
erty (Q + b)*cP, which is a persistence property, but
can be shown not to be an obligation property, shows
that containment is strict.

It can also be shown that the obligation class is
precisely the intersection of the recurrence and persis-
tence classes, i.e., it contains all those properties that
are each both a recurrence and a persistence property.

The Reactivity Class

There is a very close analogy between the way the
obligation class is constructed by boolean combina-
tions of safety and guarantee properties, and the way
the reactivity class is constructed by boolean com-
binations of recurrence and persistence properties.
We can therefore transliterate all the properties es-
tablished for the obligation class into corresponding
properties of the reactivity class.

Every reactivity property is presentable in a con-
junctive normal form

fi(R(@i)U P(@i)),

i=l

385

for some n > 0, and finitary properties
@l, Ql, * * f ,%a, a,.

Similarly, every reactivity property is presentable
in a disjunctive normal form

for some n > 0.
These two presentations support two infinite strict

hierarchies of reactivity properties.
A reactivity property that is presentable in a con-

junctive normal form with n = 1 is called a simple
reactivity property.

The class of reactivity properties is closed under all
the three boolean operations.

Consider a simple reactivity property II = R(Q) U

P(m). Obviously a word IT belongs to II if either it has
infinitely many q-prefixes, or all of its prefixes, from
a certain point on, do not belong to Cp. Consequently,
if u contains infinitely many Q-prefixes it must also
contain infinitely many g-prefixes. Thus, we may
view the Q-prefixes as a reaction to having infinitely
many @-prefixes. A more general property of the form

n,(wi> U~(~>>, can be viewed as a multiple reac-
tion promising infinitely many @;-prefixes for every i
such that c contains infinitely many @i-prefixes. In
Figure 1, we present a diagram that displays the six
classes we have discussed and the containment relax
tions holding between them.

Expression by a First Order Language

The properties A(Q), E(a), R(a) and P(@) can be
logically characterized as follows. Let C be the
language consisting of individual variables u, u’, . . .,
unary relations (set symbols) a,, \zr,. . ., and the bi-
nary relation 4. Consider properties defined by first-
order formulae of the form X(u), with a free variable
u, interpreted in the obvious way.

For each 0 E {A, E, R, P), the property (3(a) can
be defined by

where

x$(u) : Vu’ 4 u . @(a’)

x;(u) : 37’ 4 u. qu’)

x;(u) : Vu’ 4 CT. W’(U 4 u” 4 a). <p(u”)

x$(u) : 30’ 4 u. Vu”(U’ 4 u” 4 a). aqu”)

Reactivity

A3 : ni[fq@i> u P(R)]

Gso n Ft,a

A\i[“oPi V VOqi]

(F) (-)

Figure 1: Inclusion Relations between the Classes

Thus, it is justified to denote the (class of
sequences-sets satisfying) property A(Q) by the no-

tation IIf, the property E(Q) by x?, the prop-

erty R(Q) by @, and the property P(Q) by @.
We omit the superscript ip when referring to the gen-
eral properties over arbitrary sets @. The compound
properties of obligation and reactivity can now be de-
noted by A2 = II, n X2 and A3 respectively.

The Safety-Liveness Classification

As we have already mentioned, there exists another
classification that partitions the set of all properties
into two disjoint classes, the class of safety and the
class of liweness (see [Lam83, AS85]).

The definition of the safety class is the one we have
used before, or equivalently, the characterization of
an infinitary property as being a safety property if it
satisfies

II = A(Pref(II)).

386

An infinitary property II is defined as being a liveness
property if every finite word cr E II+ is a prefix of a
word in If, i.e., Pref(lI) = C+.

Observe that the definition implies that liveness
properties are upwards closed. This means that if
II is a liveness property, then so is any II’ > If.

One of the important aspects of the safety-liveness
classification is that it provides an exhaustive parti-
tion of the class of all properties. Consider the prop-
erty a+bIY, whose temporal logic expression is aZ4b.
This property is certainly not a safety property as it
does not equal its safety closure, which is aw U a*bC“’
or a U b (using the unless operator U). Clearly, the
property aUb can be represented as the conjunction
of the two properties a U b and Ob. We can view a U b
as representing the safety component of the property,
claiming at any point that we have not lost yet the
chance of realizing aUb.

The property Ob, which can be represented by the
w-regular expression C’ . b. C” , is obviously a liveness
formula (as seen by Pref(C* . b . I?‘) = C+), and it
can be viewed as the most distilled non-safety part
of the property aUb that does not impose any safety
constraints.

Clearly the classes of safety and liveness are dis-
joint, except for the trivial property C” (T in tempe
ral logic). Thus, the important fact about the safety-
liveness classification is the following

Claim

Every property If can be represented as the
intersection

n = n, n l-IL,

where Ifs is a safety property and IIL is a
liveness property.

To prove this claim we take IIs to be the safety clo-
sure of II, IIs = A(Pref(II)). For IIL we take the
fiveness extension of II, defined by

&Q-I) = II u E(Pref0).

Thus, L(II) consists of all the words of ll plus all the
words that have at least one prefix that cannot be
extended to a word of II. Since for every finitary a,
Pref(E(O)) C a, we can compute

Pref(L(II)) = Pref(II) U Pref(E(Pref0))

C Pref(II) U Pref(II) = C+.

This shows that L(H) is a liveness property. Next,
we show that II = IIs n IIL. We use the definitions of

IIs and ff~ and the distribution of intersection over
union to get

rls n n, =

[A(Pref(ll)) n E(m)]

Since every property is contained in its safety clo-
sure, it follows that II E A(Pref(II)), and hence

A(Pref(II)) nII = II. The equality A(ib)nE@) = q5
is true for every finitary property Cp, in particular for
ip = Pref(lI), which leads to the fact that the second
intersection is empty. This shows that

rls n rrL = n.

We can identify within the liveness class the same hi-
erarchy we have previously introduced. Let K stand
for the name of any of the five non-safety classes, i.e.,
guarantee, obligation, recurrence, persistence, or re-
activity. We define a property to be a live n-property
if it is a liveness property that also belongs to the K
class.

An interesting observation is that if II is a property
of class K, then its liveness extension L(II) is a live K-
property. This is because L(If) is formed by the union
of II with the guarantee property E(m), and
all the non-safety classes are closed under unions with
guarantee properties. It follows that

any property II of the non-safety class K is
representable as the intersection

where IIs is a safety property and IIL is a
live K-property.

This observation shows that in some sense the Bore1
and the safety-liveness classifications are orthogonal
to one another.

A special case of liveness properties is the class of
uniform liveness property. A property II is defined
to be a uniform liveness property if there exists a
single infinite word u’ E I?‘, such that C+ . u’ C II.
That is, for every arbitrary rr E C+, c7. u’ E II. Note,
in comparison, that liveness only requires that for
every cr E C+, there exists some u’ E C”, such that
U-U’ E II, while uniform liveness insists that the same
u’ extends any finite word to a II-word.

As an example of a property that is a liveness prop-
erty but not a uniform liveness, consider an alphabet
C = {a,b). Thepropertya.C*-aa.P+b.C*.bb.P
requires that the state that appears first in the word
appears sometimes later, twice in succession, Let u be
any word. If u begins in an u-state, then the proper

387

extension is ~7’ = oo.Ew. If u begins in a b-state, then
the proper extension is (T’ = bb . C”. Clearly, there
does not exist a uniform extension u’ that applies to
all words 0 E E+ .

3 The Topological View

In this section we characterize the different classes in
the hierarchy by their topological properties. We will
show that the classes of properties in our hierarchy
correspond precisely to the lower two (and a half)
levels of the Bore1 topological hierarchy.

First, let us define the appropriate topological no-
tions. For a word u, we denote by ~[i], i = 0,. . . , the
i’th element (state) of u, counting from 0. For ex-
ample, if u = 0, 1,2, . . . , then a[i] = i. Also, for any
n>O,ifa= an+lbw, then u[n] = a and a[n+ l] = b.

We define the distance between two infinite words
u and u to be 0 if they are identical, and

p(u,u’) = 2-j

otherwise, where j 2 0 is the minimal index on which
they differ, i.e., such that ub] # u’[j]. Equivalently,
j is the length of the longest prefix on which they
agree. There is nothing magic about this particular
function of j. Any other function of j that tends to
zero as j tends to infinity will do equally well.

For example, for every tz > 0, p(a”bw,a2nb“‘) =
2 -n, since the longest prefix on which these two words
agree is a” of length n.

It is not difficult to see that the distance function
p has all the properties required from a metric, and
that with this metric, the set Cw becomes a complete
metric space.

Following the standard definitions, we say that an
infinite sequence of words (each of which is an infinite
sequence of states)

converges to the limit Q, if the distance p(u,uh) tends
to 0 as k goes to infinity. In other words, the length
of the maximal prefix common to u and to u) grows
to infinity together with k.

For a given integer L > 0, we say that the words
u and u’ share a prefix longer than L, if there exists
a finite word 6, which is a prefix of both u and u’,
and whose length exceeds L. With this notion we can
reformulate the definition ,of the sequence us, ur , . . .
converging to u if for every L > 0 there exists an
index k, such that u and uk share a prefix longer than
L. The advantage of this version of the definition is
that it does not depend explicitly on the particular
distance function p.

Consider, for example, the sequence of words
b”, abw, uabw, aaab”, It is not difficult to see that
this sequence converges to the limit ~6”. This is be-
cause the sequence of longest prefixes common to aw
and to (Tk = a”: b”, which is a’, gets increasingly
longer with k.

Given a set U E C”, we define the word u E E”
to be a limit point of the set U, if there exists an
infinite sequence of words uc, ul, (~2, . . . , all of which
belong to U, that converges to u. Clearly, any u E U
is a limit point of U, since the sequence u, u,u,. . .
converges to u.

We define the (topological) closure of U, denoted
by cl(U), to be the set of all limit points of U. Ob-
viously, U C cl(U). For example, the closure of the
set a+b” is given by cl(a+b”) = a+b” + ow, which
consists of the original set plus the limit word &.

We define a set U to be closed if it contains all
its limit points, i.e., cl(U) c U, which immediately
yields cl(U) = U. Thus, a+bw + aw is a closed set,
while a+&“ is not.

We proceed to consider each of the classes of prop-
erties we have introduced above, and give it a topo-
logical characterization. We will start with the four
basic classes.

The Safety Properties are the Closed
sets

To show the correspondent between the safety prop-
erties and closed sets, we prove the following general
identity that hold for any set II C C”

cl@) = AtprefW)-

Let us denote @ = Pref(lI). The set 0 is of course
prefix closed, which means that if a E @ and u’ 4 u,
then also u’ E 3.

Let u E cl(n). This means that there exists an
infinite sequence uo, ~1, . . . of words in II, whose limit
is u. Let b 4 u be an arbitrary prefix of u. By the
definition of a sequence converging to a limit, there
must exists some k 1 0, such that u and uk share a
common prefix u’ which is longer than 8. It follows
that & 4 6’ 4 Uk, and therefore B E Pref(II). The
case that 61: = d is similar. Thus, any prefix of u is
in Pref(B), and therefore u E A(Pref(II)).

In the other direction, let u E A(Pref(II)). For
each k > 0, let &k denote the prefix of u of length k.
By the assumption, each &k belongs to Pref(II), and
therefore there exists a bk E B, such that 6.k 4 uk.
We claim that the sequence ~1, ~2, . . . converges to u.
This is because for any length L it is sufficient to take
k > L to obtain a member of the sequence, namely

388

(Tk, which shares with cr at least the prefix &, whose
length exceeds L. Thus, (T is a limit point of II. II

Having established the equivalence of the operators
cl(l’I) and A(Pref(II)), it easy to conclude that

Il is a safety property iff II = A(Pref(II))
iff II = d(II) iff II is a closed set.

The closure of the class of closed sets with respect
to finite unions and intersections is a known topo-
logical fact, and corresponds to the similar closure
properties we have established in the linguistic view.
In the inclusion diagram we represent the topological
characterization of this class by the letter F, which
usually designate the class of closed sets.

The Guarantee Properties are the Open
sets

Following the standard topological definitions, a set
II is defined to be open in our topology if for every u
belonging to II, there exists an L > 0, such that any
other word u’, sharing with CT a prefix longer than L,
is also in II. Thus, a complete environment of all the
words that are close enough to cr is fully contained in
II. It is not difficult to see that II is an open set iff W
(the complement with respect to Cw) is closed. Thus
the families of closed an open sets are dual.

We can use this duality, and the previously estab-
lished equivalence between safety properties and the
family of closed sets to establish the equivalence be-
tween guarantee properties and the family of open
sets as follows:

II is a guarantee property iff ‘E) is a safety
property iff n is a closed set iff II is an open
set.

However, it may be instructive to present an inde-
pendent proof of the latter equivalence.

Let Il = E(Q) b e a guarantee property. Let u E II
be any word in II. By definition, tr has a finite prefix
B + u which belongs to a. Assume its length to be
L > 0. Then we claim that all infinite words which
share with (T a prefix longer than L are also in II. Let
u’ be such an infinite word. Since u and u’ share a
prefix longer than L, u’ must also have B as a prefix.
Consequently, u’ E II.

In the other direction, Let II be an open set. Take
any infinite word u E II. Since Il is open, there must
be some integer L > 0, such that all infinite words
that share with cr a prefix longer than L are in II.
Let B be the prefix of length L + 1 of u. We define Q
to be the set of all such prefixes. It is not difficult to
see that E(a) = II. a

In the inclusion diagram, we denote the character-
ization of the guarantee properties as the family of
open sets by the designation G which stands for the
open sets.

The Recurrence Properties are the Gb
sets

A set is defined to belong to the Ga family if it can
be obtained as a countable intersection of open sets.
Note, that if we take only a finite intersection of open
sets, we still obtain an open set.

Consider for example the sequence of open sets

G1 : (a*b).C” , G2 : (c~*b)~Z” , G3 : (A*b)X” , . . .,

where we assume C = {a, b}. Clearly Gk is the set
of all words that have at least k occurrences of the
letter b. It is not difficult to see that the intersection
of the sequence of these sets yields the set H : (a*b)“‘,
that consists of all the words having each an infinite
number of b’s. It can easily be shown that the set H
is neither open nor closed, but is, by definition a Ga
set.

Let us show now that a set II is a recurrence prop-
erty iff it is a Ga set.

Assume, first, that II is a recurrence property, i.e.,
II = R(Q) for some finitary 0, and let u E II. For
every k > 0 define the set +k to be the set of words
u such that u E @, and cr contains Ic - 1 distinct
proper prefixes that belong also to 0. Some of the
sets @p, may be empty, but they cannot all be empty,
otherwise II would have been empty. For each k > 0
define now Gh = @k ’ c” = E(@‘L). It is not difficult
to see that the Gk’s are open, and that

II=QGk-

In the other direction, let II be a Ga set, i.e.,
H = n, Gk for some open sets Ge,Gl, By the
characterization of open sets, each q k can be repre-
sented as Gk = +k .c” for some finitary ak. Consider
an arbitrary cr E II. For every k > 0, u must have
a prefix @k belonging to @h. Without loss of gen-
erality we may assume that Bk is the shortest preix
of u that belongs to +k. There are two cases to be
considered. In the first case, the lengths of the pre-
fixes 6k are bounded. In that case there exists a sin-
gle prefix 5 such that &k 5 8. Defining a finitary
set @ = nk(@k . cw), we can easily see that ti be-
longs to a. Thus, in the bounded case, c belongs
to @ . Cw = E(a). Next consider the case that the
lengths of the prefixes &k are bounded. Let us de-
fine a new set of prefixes u;, ai, . . . , where (T; is the

389

shortest prefix of u such that 60 5 ai, . . . , &k 5 0;.
It is not difficult to see that the lengths of the a; are

also unbounded. Define the sets \Irk = r)izi(Q. C*).
Let rk be the prefix free subset of @k, i.e., the set of
words & belonging to \Ek, such that no proper pre-
fix of ii belongs to \kk. Clearly, each UE belongs to
rk. If we denote the union of the Tk’s by T = IJk rk
then, in the unbounded case, u E R(T) since CJ has
unboundedly many prefixes belonging to I’. We may
summarize the two cases by

for the finitary sets i9 and r defined above.
It is not difficult to see that E(Q) c Il. For the

second component, consider some word cr E R(r).
This word has infinitely many prefixes, each belong-
ing to some rk. Since the sets rk are prefix free,
the infinitely many prefixes must belong to infinitely
many different rk’s. For any i 1 0, there must be a
prefix 6 4 B belonging to rk for k > i. By the defini-
tions of rk and \El:, it follows that b E @i . C’. Thus
u E @i . Cw for every i. Consequently, R(r) c II. We
may conclude

n = E(a) u R(r).

Since the union of a guarantee property with a recur-
rence property is a recurrence property, we conclude
that every Ga set is a recurrence property. J

The Persistence Properties are the F,
sets

A set is defined to belong to the F,, family if it can be
obtained as the countable union of closed sets. Obvi-
ously, a set U is F0 iff its complement r is Ga. Since
the complement of a persistence property is a recur-
rence property, the equivalence between persistence
properties and Fq sets follows by duality from the
corresponding results for recurrence properties.

Topological Characterization of the
Safety-Liveness Classification

Following [AS85], we provide a topological character-
ization of the safety-liveness classification. We have
already shown that the safety class corresponds to the
family of closed sets. .

As claimed in [AS85], the cIass of Iiveness proper-
ties corresponds to the family of dense sets. A set U
is defined to be dense in a space, such as Cw, if for
any word ff E Cw and any integer L > 0, there ex-
ists a word u’ belonging to U, sharing with u a prefix

longer than L. Thus, members of W exists arbitrary
close to any word Q E P’.

To show that every liveness property is dense, con-
sider a liveness property II, and let CT be an arbitrary
word, and L > 0 an arbitrary integer. Let b be the
prefix of d of length L + 1. By the definition of a
liveness set there exists some word U’ belonging to II,
having B as a prefix. Consequently, u and u’ share a
prefix (at least i?), longer than L.

4 The Temporal Logic View

After studying properties and their classification in
an abstract language - theoretical and topological set-
tings, we consider a subset of all these properties,
the properties expressible by temporal logic. We will
show that the hierarchy introduced in the abstract
setting, still exists within the set of expressible prop-
erties, and each class has an additional characterizai
tion by formulae of a special form that can express
all the expressible properties belonging to that class.

As we will see, each class enjoys certain closure
properties and is associated with an appropriate proof
principle for verifying that a given program satisfies
a property in the class.

Our main interest is in the question of what types of
properties are expressible in temporal logic (or equiv-
alent formalisms), and whether temporal logic is pow-
erful enough to express all the interesting properties
of reactive systems.

We will consider each of the basic concepts intro
duced under the abstract setting and show how to
restrict them to the framework of expressible proper-
ties.

First, we present a short introduction to the lan-
guage of temporal logic.

The Language of Temporal Logic

We assume an underlying assertional language, which
is used to describe properties of states. in the current
discussion, we will consider two types of state lan-
guages. For the case that E is finite, we may use the
states themselves as basic propositions.

For example, assume that C = {a,6,c}. Then, we
may take a, b, and c as basic propositions, that can be
combined by the usual boolean combinations. Thus,
the assertion a is true on the state a and is false on
the states b and c. On the other hand, the assertion
la, which in our case is also equivalent to bVc is true
on both the states b and c, and false on the state a.

The other type of state language we will consider
assumes that the states have structure, and repre-
sent intermediate situations in the computation of a

390

concrete programs. In this case, we assume that the
state contains the current values of all the program
variables, as well as an appropriate representation of
the control of the program, which tells us at what
location the program is currently executing. Thus,
we will allow basic state-predicates of the form at-.!,
that tell us that the program is currently executing
at location 4!, as well as explicit references to the cur-
rent values of the program variables. We will use this
version of the state language to illustrate the utility
of temporal logic for expressing properties of concrete
programs.

We refer to a formula in the assertional language
as a state formula, or simply as an assertion.

A temporal formula is constructed out of state for-
mulae to which we apply the boolean operators 7 and
V (the other boolean operators can be defined from
these), and the following basic temporal operators:

0 - Next 0 - Previous
U - Until S - Since

A model for a temporal formula p is an infinite se-
quence of states (i.e., a word)

u : so, Sl, . ..)

where each state sj provides an interpretation for the
state subformulae mentioned in p.

Given a model u, as above, we present an inductive
definition for the notion of a temporal formula p hold-
ing at a position j > 0 in tr, denoted by (a, j) + p.
For a state formula p,

That is, we evaluate p locally, using the interpretation
given by sj.

(c j) I= ‘P c-4 (4 F P

p; E&l” e+ (4 I= P or (a,j> != q

(a1.i) I= puq
* W+ 1) I=P
e for some X: 2 j,(u, k) + q,

and for every i such that j 5 i < k, (u, ;) + p

(u,j>l=Oop e j>oand(u,j--l)l=p
(u,d I= PSq e for some k 5 j,(u,k) +q,

and for every i such that j 2 i > B, (u, i) iz p

Additional temporal operators can be defined a.s fol-
lows:

op = Tup - Eventually
Elp = 707p - Henceforth
pUq = Op V (pUq) - Unless
+ = TSp - Sometimes in the past
op = 7&p - Always in the past
@q = mp V (psq) - Weak Since
@p = 70-p - Weak Previous

Another useful derived operator is the entailment op-
erator, defined by:

P=+!l = q (P + 9).

A formula that contains no future operators is
called a past formula. A formula that contains no
past operators is called a future formula. Note that
a state formula is both a’ past and a future formula.
We refer to a past formula (future formula) that is not
also a state formula, as a strict-past (strict-future, re-
spectively) formula. For a state formula p and a state
s such that p holds on s, we say that s is a pstate.

If (u, 0) + p, we say that p holds on 6, and denote
it by u b p. A formulap is called satisfiable if it holds
on some model. A formula is called valid if it holds
on all models.

Two formulae p and q are defined to be equivalent,
denoted by

P - Q,

if the formula p s q is valid, i.e., u + p iff u /= q, for
all u.

Following are some simple examples of temporal
formulae and their intuitive meaning as a requirment
on the sequences (words) that satisfy them.

p--coq
If initially p then eventually q.

q (P --t Oq)
Every pposition coincides with or is followed by
q-position.

ooq
The sequence u contains infinitely many q-
positions.

04
Eventually persistently q, or equivalently:
The sequence u contains only finitely many lq-
positions.

(7) u P
If there exist any q-positions, then the first q-
position must coincide or be preceded by a p-
position,

Every q-position coincides with or is preceded by
a p-position.

-@T
There is no previous position that satisfies T.
Since all positions which are in the model must
satisfy T, this is equivalent to:

There is no previous position.

391

Note that this formula uniquely characterize the
initial position of every model. We refer to this
formula as first.

The Temporal Hierarchy of Properties

First, consider the notion of an infinitary property, to
which, for simplicity, we will refer simply as a prop-
erty. In the syntactical framework every property
II c C” is associated with a temporal formula ‘P. The
property itself, i.e., the set of sequences belonging to
II, is defined as the set of all (infinite) sequences sat-
isfying the formula 9. We denote by Sat((P) the set
of these sequences. We say that a property II is ex-
pressible (in temporal logic) if II = S&(P) for some
temporal formula Cp.

Next, consider the notion of a finitary property Cp &
C+. To express such properties we use a past formula
p. Let cr E C+ be a finite sequence of length 1~1 = n
and p a past formula. We say that (T end-satisfies p,
denoted by u =I p, if for some infinite extension u’ E
P, such that P 4 a’, (u’, n - 1) + p. That is, p
holds at the last position of u within a’. It is not
difficult to see that this definition is dependent only
on the first n positions of u’, i.e., on u. The finitary
property represented by the past formula p is defined
to be the set of finite sequences that end-satisfy p.
For a past formula p, denote by es&(p), the finitary
property defined by p, i.e., the set of finite sequences
that end-satisfy p. We say that a flnitary property Q
is expressible (in temporal logic) if it equals es&(p)
for some past formula cp.

For example, the finitary property a’b can be rep-
resented by the past formula b A &a, which claims
that b holds now and a holds in all the preceding per
sitions.

With these interpretations we can now show that
the four language operators A, E, R, and P, when
applied to expressible finitary properties, can be rep-
resented by the four future modalities 13, 0, 00,
and 0 I3. This is stated by the following claims

l Sat(Op) = A(esat(p))

l Sot(Op) = E(esat(p))

0 Sat(0Op) = R(esat(p))

0 Sat(00p) = P(esat(p))

Consider, for example, the first clause, It is clear
that u E Sat(Op) iff u b q p iff all prefixes of u
end-satisfy p iff all prefixes of u belong to es&(p) iff
u E A (esat(p)) .

Similar arguments justify the remaining three
clauses.

In the following we will be interested in the clo-
sure of properties expressible by temporal formulae
under the operations of union, intersection, and com-
plementation. The following useful identities show
that these operations on the properties can be trans-
lated to disjunction, conjunction, and negation of the
formulae expressing the properties.

Sat(V) u Sat(?+q = Sat(PV $)

Sat(v) n Sat($) = Sat(cp~ g)
Sut(‘p) = Sat(+),

where complementation is relative to Y”.

Safety Formulae

We define a safety formula to be a formula of the
form

OP,

for a past-formula p. Such a formula states that all
positions in a computation satisfy p. Equivalently, all
prefixes of a computation end-satisfy p.

A property that can be specified by a safety for-
mula is called a safely-specifiable property. Clearly, a
property specified by the safety formula Op is a safety
property, because it can be presented as

A(esdp)).

We say that an arbitrary formula is safety-equivalent
if it is equivalent to a safety property. Obviously, all
safety-equivalent formulae specify safety properties.

Usually, safety formulae express invariance of some
state property over all computations, or precedence
constraints of the form: if events er and es happen
then ei must precede es.

In the simpler cases, p is a &ate-formula, and then
the formula Op specifies that all states in the compu-
tation satisfy p. An example of such a simple safety
property is the formula

q (r 2 O),
specifying that, in all states of the computation, the
value of ?: is nonnegative.

We will illustrate the utility of state invariances by
presenting several typical examples.

0 Partial Correctness

Let P be a program whose terminal location is 4.
Let I,!J be an assertion specifying the post condition of
the program, i.e., constraints on the final state of the
program. For example, if P computes the factoria1 of
the input 2, and places it in the output variable t,

392

the post condition can be 4 : (z = z). The program
is defined to be partially correct, with respect to the
post condition $ if every dennina2ing computation
must terminates in a state satisfying +. Nothing is
implied about non-terminating computation. Partial
correctness with respect to Q,LJ can be specified by the
safety formula

qat-et - $).

This formula states that it is invariantly true that
if control is at the terminating location et, i.e., the
program has terminated, then the post condition $
holds.

l Mutual Exclusion

Consider a program consisting of two processes PI
and Pz that need to coordinate their entry to critical
sections in their code, The program for each process
Pi is usually partitioned into three sections: Ni, Ti,

and Ci. The section Ni represents the non-critical
activity of the process, where no coordination is re-
quired. The section Ti represents the trying section,
where a process decides it needs to access its critical
section, and engages in a protocol that will ensure
eventual access. The section Ci represents the crit-
ical section itself. The basic requirement of mutual
exclusion algorithms is that it is never the case that
both PI and Pz execute their critical sections at the
same time. This requirement can be expressed by the
safety formula

o-(2-n- Cl A in- Cz),

where in, Ci is a control predicate expressing the fact
that Pi is currently executing within the section Ci.

The more general case of safety formulae of the
form q p, where p is not a state formula, is illustrated
by the following examples:

l Precedence

The basic precedence formula has the form

It states that if Q ever occur, then it must be preceded
by p. There are many applications and corresponding
interpretations to this formula. For example, it can
be interpreted as the property of casual dependence
of q upon p. That is, q cannot happen unless it is
caused by p. If Q is a response to the request p, then
this property claims that the system does not repond
spuriously, without being requested.

The same property can also be specified by the
future formula (-q)Up. While this is not a safety
formula, it is equivalent to the safety formula given
above, and therefore specifies precisely the same prop-
erty.

l FIFO ordering

Assume that q represents a response to a request p,
and q’ represents a similar but disjoint response to the
request p’. For example, the two may represent sim-
ilar responses to different customers. The following
safety formula states that the order of the responses
matches the order of the requests.

Note that this formula does not guarantee any re-
sponses, but it claims that if they appear, they appear
in the right order.

Closure of Properties Expressible by Safety
Formulae

The class of properties expressible by safety formulae
is closed under the positive boolean operations, i.e.,
intersection and union. As stated before, it suffices to
show that if CP and 111 are safety formulae then both
Cp A $J and ‘P V 1c, are equivalent to safety formulae.
That is, it suffices to show that the class of safety-
equivalent formulae is closed under conjunction and
disjunction.

To see this we present the following equivalences for
the conjunction and disjunction of safety formulae:

(UP A Ql) - O(P A 4)

(UP v %I) - D(QP VQq).

The left-hand side of the second equivalence states,
for a computation 6, that either all positions in CT
satisfy p or all positions in c satisfy Q. The right-
hand side states that for each position i, either all
positions j 5 i satisfy p, or all positions j 2 i satisfy
q. To see that the right-hand side implies the left-
hand side, we consider two cases. If all positions in cr
satisfy both p and q then, clearly, the left-hand side
follows. If for some j, (a, j) # p, then the only way
the right-hand side can hold is by having for all i 1 j,
(~,i) /= Oq, from which Oq follows.

Since the right-hand side of both equivalences is a
safety formula (under the assumption that p and q are
past-formulae), this establishes the closure of proper-
ties expressible by safety formulae under intersection
and union.

An important formula is the formula of conditional
safety, in which a property expressed by q q is condi-
tional on a state-formula p holding at the first state
of the computation. This formula has the form

P-Q*

393

While not being a safety formula itself, this formula
is safety-equivalent due to the equivalence

(P + w TV ((
0 0 (p A first) + B)).

The formula on the right states that at each position
j, if j has been preceded by some paition i 5 j that
satisfies p and is also first (forcing i = 0), then q
should hold at j.

0 Full Partial Correctness

In specifying terminating programs, one usually spec-
ifies a precondition ‘P, in addition to the postcondition
$. The role of the precondition is to constrain the in-
puts for which the program is expected to produce the
right result. For example, for the factorial comput-
ing program, a natural precondition is: 9 : (z > 0),
claiming that the program is expected to produce a
correct result only if we start it with a non-negative
input. The partial correctness of a program P with
respect to both the precondition GF and the postcon-
dition GP can be specified by the conditional safety
formula

Guarantee Formulae

A guarantee fonnvla is a formula of the form

OP,

for some past-formula p. Such a formula states that
at least one position in a computation satisfies p.

A property that can be specified by a guaran-
tee formula is called a guarantee-specifiable property.
Clearly, any property that can be specified by the
guarantee formula Op is a guarantee property, since
it can be presented as

An arbitrary formula is defined to be guarantee-
equivalent if it is equivalent to a guarantee formula.

Usually, guarantee formulae ensure that some event
eventually happens. They guarantee that the event
happens at least once, but cannot promise any repe-
titions of the event. Therefore, they are mainly used
to ensure events that happen once in the lifetime of
a program execution, such as termination.

Obviously, a formula specifies a guarantee-
specifiable property iff it is equivalent to some guar-
antee formula.

An example of the simple case, in which p is a state-
formula, is the formula

O(terrninal)

specifying that some state of the computation is ter-
minal. Clearly if all computations of a given program
satisfy this formula, the program is terminating. In-
stead of using the abstract predicate terminal, we
can use the more concrete formula 0(&J,), claim-
ing that all computations eventually reach the termi-
nal location !,.

We observe that the conditional guarantee formula

P--+04,

while not being a guarantee formula, still specifies
guarantee-specifiable properties. This is because it is
equivalent to the guarantee formula

O(fird Ap + q).

This formula states that eventually we reach a posi-
tion such that if, looking back towards the origin, we
detect that p held at the initial position, then q holds
now.

l Total Correctness

Consider a program P associated with a precondition
P and a postcondition $‘. The program P is said to
be totally correct with respect to (cP,$‘) if all compu-
tations starting at a V-state terminate at a&state.
This property can be expressed by the conditional
guarantee formula

Closure of Guarantee-Specifiable Properties

Many features of the guarantee-specifiable class of
properties can be obtained by the duality relation be-
tween the safety-specifiable and guarantee-specifiable
classes. This duality is based on the equivalence

1op w O(--@p).

Fromthis equivalence we can immediately conclude
that II is a guarantee-specifiable property iff the com-
plementary property ?I (i.e., the set of all computa-
tions not in n) is a safety-specifiable property.

In principle we could justify the closure properties
of the guarantee-specifiable class, using duality and
the corresponding closure properties of the safety-
specifiable class. However, we prefer to give an in-
dependent justification.

Similarly to the class of safety-equivalent formulae,
the dass of guarantee-equivalent formulae is closed
under the positive boolean operations of disjunction
and conjunction.

394

This can be shown using the following equivalence
and equivalence:

(OP v Oq) - Ob v ql
(OP A Od - O[OP A %I-

The second equivalence claims that a computation u
contains both a p-position (a position satisfying p)
and a q-position iff it has a position i such that there
exist a q-position j 5 i, and a p-position E 5 i, pre-
ceding i.

The class of guarantee-equivalent formulae is not
closed under negation. On the other hand, the nega
tion of a guarantee formula is equivalent to a safety
formula. Similarly, the negation of a safety formula
is equivalent to a guarantee formula.

This is due to the following two equivalences:

(TOP) - 0(-p)

(-op) - 0 (-P).

We say that the classes of guarantee-equivalent and
safety-equivalent formulae are dual; as each can be
obtained by the negation of the other.

Obligation Formulae

Some properties cannot be expressed by either safety
or guarantee formulae alone, and must be expressed
as a boolean combination of such formulae. We there-
fore consider the class of such properties.

A simple obligation is a formula of the form

UP v Oq,

where p and q are past formulae. This formula states
that either p holds at all positions of a computation
or q holds at some position.

A property that can be specified by a simple obli-
gation formula is called a simple obligation specijiable
property. Clearly, any property that can be specified
by the simple obligation formula OpV Oq is a simple
obligation property, since it can be presented as

A(esat(p)) U E(esat(q)).

An obviously equivalent form for a simple obligation
formula is

Or - oq,

which states that if some position satisfies r then
some position (possibly the same) satisfies q.

l Exceptions

A typical example of properties that are naturally
specified by obligation formulae is that of exceptional
occurrences. Assume a program that in the normal
course of its behavior is not supposed to terminate
but to maintain some regular activity. However, in
the case of the occurrence of some exceptional event
p, it is supposed to take some exceptional action q
and to terminate. Specifying this behavior can be
done by the guarantee foimula

Note that this formula also guarantees that q happens
only after some occurrence of p.

General Obligation Formulae

The class of properties specifiable by simple obliga
tion formulae is closed under union. To see this, we
observe the trivial equivalence

[(“PI v OPl) v (DP2 v %2)] -

[@PI v q P2) v (%l v 0!?2>].

Using the closure of both the safety- and guarantee-
equivalent formulae under disjunction, this leads to
an equivalent simple obligation formula. However,
the class of properties specifiable by simple obliga-
tion formulae is not closed under intersection. This
implies that by taking conjunctions of simple obliga-
tion formulae we obtain a more powerful class.

We therefore define a31 obligation formula to be a
formula of the form

i=l

Correspondingly, a property specifiable by such a for-
mula is called an obligation property. A formula
that is equivalent to an obligation formula is called
obligation-equivalent

This class is the largest class that can be obtained
by taking finite boolean combinations of safety and
guarantee formulae.

Claim
Every boolean combination of safety and
guarantee formulae is equivalent to an obli-
gation formula.

To see this, consider an arbitrary boolean combina-
tion of safety and guarantee formulae. First we push
all negations into the past-formulae, changing A into
V, •I into 0, and vice-versa. Next we bring the for-
mula into a conjunctive normal form:

II

A[up; v . . . v upi; v oqf v . . . v oqk,].
i=l

395

We then use the closure properties of the safety and
guarantee formulae to collapse all of q pf V . , .V Cl&

into a single safety formula, and Vqf V . . . V Vqii
into a single guarantee formula.

l Accessibility

This claim also implies that the class of obligation-
equivalent formulae is closed under all boolean oper-
ations.

Inclusion

The class of obligation-specifiable properties strictly
contains the classes of safety specifiable and guaran-
tee specifiable properties. In fact, the property de-
scribed by Up V Vq for propositions p and q cannot
be specified by either safety or guarantee formulae.

Consider again a program for solving the mutual ex-
clusion problem. As already mentioned in the intro-
duction, the safety property that disallows the two
processes to co-reside in their critical sections is only
part of the specification. It can easily be implemented
by a program that does not allow any of the processes
to ever access its critical section. To exclude such spu-
rious solutions we must add to the specification the
requirement that each process interested in entering
the critical section will eventually succeed. This prop-
erty can be specified by the response formula

The class of obligation-specifiable properties forms
an entire infinite strict hierarchy. The class of prop-
erties expressible by a conjunction of n + 1 simple
obligation formulae strictly contains the class corre-
sponding to a conjunction of only st simple obligation
formulae.

This formula requires that whenever one of the pro-
cesses is observed to occupy the trying section Ti,
then eventually it will be observed in the critical sec-
tion Ci.

Closure of Recurrence-Specifiable Properties
Recurrence Formulae

A recurrence formula is a formula of the form:
The class of properties expressible by recurrence for-
mulae is closed under the positive boolean operations.

q OP,
This is shown by the following equivalences:

for some past-formulap. It states that infinitely many
positions in the computation satisfy p.

A property that can be specified by a recurrence
formula is called a recurrence-specifiable property.

Clea.rly, a property specifiable by the recurrence
formula OOp is a recurrence property, since it can be
presented as

R(e4d) -

[OVP v OV41 - DV(P v 4)

[oop A ovq] - 00 (4 A O(WP))~

The past formula q A a((-q) Sp) expresses precisely
the miner operator applied to the finitary properties
es&(p) and esat(g), that is,

A formula that is equivalent to a recurrence formula is
called recurrence-equivalent. One of the most impor-
tant recurrence-equivalent formulae is the following
formula, called a response formula

esat(g A o((-4)s~)) = minez(esal(p), esat(q)).

The fact that this formula is recurrence equivalent is
established by the equivalence

O(P - Oq) - q O((YP)uq).

The formula on the right states that there exists in-
finitely many positions in which there is no pending
request, i.e., a request that has not been followed by
a response +

To see this, let u be a finite sequence that end-
satisfies p A Q ((7q) Sp) . By definition its last po-
sition satisfies q, and hence u E esat(q). The for-
mula @((-q)Sp), holding at the last position of (T,
requires that there exists some proper prefix u’ < u,
such that u’ end-satisfies p, and hence u’ E esat(p),
and for every u”, u’ 4 u” 4 u, 19’ does not end-
satisfy q, i.e., u” 4 esat(q). It clearly follows that
u E mine2 (esat(p), esat(q)).

Inclusion of the Lower Classes

Usually, recurrence properties ensure that some All safety and guarantee formulae can be shown to
event happens infinitely many times. When speci- be special cases of recurrence formulae. Thus, the
fied by response formulae, they can express the prop- class of recurrence-specifiable properties contains the
erty of responsiveness of a system, stating that every classes of safety-specifiable and guarantee-specifiable
stimulus has a recurrence. properties.

396

This containment is supported by the following two
equivalences:

UP - q OPP)
OP - q O(OP).

The second equivalence, for example, states that a
computation Q has a p-position iff there are infinitely
many positions in whose past there is a p-position.

The containment of both classes is strict. This
means that there is a recurrence property, which can-
not be expressed by either a safety or a guarantee for-
mula. In fact, the formula q Op, for a state formula
p, cannot even be expressed by any finite boolean
combination of safety and guarantee formulae.

Expressing Weak Fairness

One of the important properties belonging to the
recurrence-specifiable class is that of weak fairness.
The representation of concurrent programs as fair
transition systems (see for example [MP83]) asso-
ciates a weak fairness requirement (also called justice)
with each transition T in the system. This require-
ment can be formulated aa

It is not the case that, from a certain point
on, the transition r is continually enabled
but never taken.

Thus, any computation satisfying this requirement
must have infinitely many positions at which either
7 is disabled or 7 is taken. This can be expressed by
the recurrence formula

0 0 [Y&(T) V taken(r)].

We assume the existence of the state predicates &I(T)
and taken(r), which test whether the transition 7 is
enabled or taken at a given state.

Persistence Formulae

A persistence formula is a formula of the form

0 UP,

for some past-formula p.. The formula states that all
but finitely many positions (all positions from a cer-
tain point on) in the computation satisfy p.

A property that can be specified by a persistence
formula is called a persistence-specifiable property.
Clearly, any property that can be specified by the
persistence formula OOp is a persistence property,
since it can be presented as

p(es+)).

A formula that is equivalent to a persistence formula
is called persistence-equivalent.

Usually, persistence formulae are used to describe
the eventual stabilization of some state or past prop-
erty of the system. They allow an arbitrary delay
until the stabilization occurs, but require that once it
occurs it is continuously maintained.

For example, p may represent a certain stimulus
to the system, and it is required that following an
occurrence of p, the system will eventually stabilize
by continuously maintaining q. This requirement may
be specified by the conditional persistence formula

O(P + OOq),

which is persistence-equivalent, since it is equivalent
to the persistence formula

OO(OP + q).

The latter formula states that all the states, from a
certain point on, satisfy the requirement that if p has
already occurred then q currently holds. Note that
this also covers the case that p never occurs, and hen
nothing is implied about q.

Closure of Persistence-Specifiable Properties

The class of properties that, can be expressed by per-
sistence formulae is closed under the positive boolean
operations.

This is shown by the following equivalences that
can also be derived by duality from the corresponding
equivalences for the recurrence case:

(OOP A OOq) - OO(P A q)
(OOp v OOq) - 00

(
q v

O(PS(P A be,)))

TO see the validity of the second equivalence, we will
show first that the left-hand side implies the right-
hand side.

Obviously, Oaq implies the right-hand side. If
Oap is true and OOq is not, let i be the position
beyond which p is true, and j 2 i some position at
which q is false (by OOq being false there are in-
finitely many such positions). It is easy to see that
for every position k 2 j, (u, k) + Q(pS(p A (-q))).

Next, we show that the right-hand side implies
the left-hand side. Again, we consider two cases.
If OOq holds, then obviously the left-hand side fol-
lows. In the other case, there are infinitely many
lq-positions. Let i be the position beyond which

ti: Q v O(PS(P A (‘Q))) continuously holds. Con-
sider an arbitrary position j 1 i, and let k > j be the

397

first lq-position to the strict right of j. Since 1c, holds
at k and q does not, it follows that o(pS(p~ (yq)))

must hold at k. This means that p must extend from
k - 1 to the left up to, and including, the first YQ-
position to the left of k. Since there is no -q-position
between j and k, p must also hold at j. Since j is an
arbitrarily chosen position to the right of i, it follows
that q p holds at i, and hence OOp holds at position
0.

The classes of properties specifiable by persistence
and recurrence formulae are dual. This means that
the complement of a property in one of the classes
belongs to the other. This is supported by the two
equivalences:

3OOP) - 09P)

-(OOp) - 00(-p).

This duality can he used for easy transfer of results
holding for one class into the other class. For ex-
ample, all the closure and inclusion properties, of
the persistence-specifiable class, as well as the proofs
about the extended persistence formulae, can be de-
rived from the corresponding properties and proofs of
the recurrence-specifiable class.

Inclusion of the Lower Classes

All safety and guarantee formula are special cases
of the persistence formula. Thus, the class of
persistence-specifiable properties contains the classes
of properties specifiable by safety and guarantee for-
mulae.

This containment is supported by the following two
equivalences:

OP N 0 WP)

OP - 0 WP).

The second equivalence, for example, states that a
computation u has a pposition iff all positions, from
a certain point on, have p in their past.

The containment of both classes is strict. This is
shown by the property OOp for a state-formula p,
that cannot be expressed by either a safety or a guar-
antee formula. In fact, it cannot be expressed by any
finite boolean combination of safety and guarantee
formulae.

Simple Reactivity Pormulae

A simple reactivity fonzlula is a formula formed by a
disjunction of a recurrence formula and a persistence
formula

oop v ooq.

This formula states that either the computation con-
tains infinitely many p-positions, or all but finitely
many of its positions are q-positions.

A property that can be specified by a simple re-
activity formula is called a simple reaclivity-specified
properly. Clearly, any property that can be speci-
fied by the simple reactivity formula ClOpV OOq is a
simple reactivity property, since it can be presented
as

R(esal(p)) U P(esal(q)).

In many cases we specify such properties by a formula
of the form

oar - q op,

which is obviously equivalent to a simple reactivity
formula.

This formula states that if the computation con-
tains infinitely many r-positions it must also contain
infinitely many ppositions. It is used to describe re-
sponsiveness of a more complicated type, which is not
based on one-to-one correspondence between stimulus
to response. It is only when we have infinitely many
stimuli that we must respond by infinitely many re-
sponses. This is a convenient abstraction to a situa-
tion in which we want to commit the system to even-
tually respond, but not specify a bound on how many
stimuli may happen before the eventual response.

The Different types of Responsiveness - A
Summary

So far, we have encountered several types of respon-
siveness, which can be specified by formulae belong-
ing to the different classes. Let us review these dif-
ferent versions. As usual, assume that p represents a
stimulus, to which the system responds by producing

The guarantee-equivalent formula

P-+ 099

ensures that if p is true inilially then q will even-
tually happen.

The obligation-equivalent formula

OP - O(q A OP),

ensures that if p happens at least once, then its
earliest occurrence will be followed by at least
one occurrence of q.

The recurrence-equivalent formula

O(P - Oq),

ensures that every occurrence of p is followed by
an occurrence of q.

398

l The persistence-equivalent formula

p+ 047,

ensures that an occurrence of p will be eventually
followed by a continuous maintenance of q.

l The reactivity-equivalent formula

oop--r ooq,

ensures that infinitely many occurrences of p are
responded to by infinitely many occurrences of

Q-

The type of responsiveness represented by sim-
ple reactivity formulae allows the program P to ig-
nore finitely many requests but not, infinitely many
of them. This description should not be taken too
literally, in the sense that no implementation of this
requirement can be based on the idea of “let us wait
first and see whether there are going to be infinitely
many c = 1 events or only finitely many of them.”
Any reasonable implementation of such a requirement
must sincerely attempt to respond to all requests, but
the liberal specification tolerates failures to respond
in the case of only finitely many requests.

The class of properties specifiable by simple reac-
tivity formulae is closed under union. This is due to
the equivalences

[(OOPI v 0%) v (OOP2 v OOq,)] -

[(OOP, v q OPZ) v (OOq1 v OQ2)]

and the closure of the recurrence and persistence-
specifiable classes under union.

However, the reactivity-specifiable class is, in gen-
eral, not closed under intersections or complementit
Cons.

Obviously, the class of properties specifiable by
simple reactivity formulae contains the classes of
properties specifiable by recurrence and persistence
formulae, and hence also the classes specifiable by
safety, guarantee and obligation formulae. This con-
tainment is strict since the property specifiable by
q Op V 0 q q cannot be expressed by any formula be-
longing to a lower class.

Expressing Strong Fairness

Simple reactivity formulae can express the require-
ment of strong fairness associated with special tran-
sitions of a fair transition system. Typically, we as-
sociate strong fairness requirements with transitions
that correspond to communication or synchronization

statements in the program, such as statements deal-
ing with semaphores.

The strong fairness requirement associated with a
transition 7 demands that

It is not the case that 7 is enabled infinitely
many times but taken only finitely many
times.

Equivalently, this requirement demands that if the
transition r is enabled infinitely many times in a com-
putation CT, then it must be taken infinitely many
times. This can be expressed by the simple reactivity
(-equivalent) forniula

00En(~) + OOtaAen(r).

General Reactivity Properties

Richer classes of properties can be expressed by con-
junctions of simple reactivity formulae of the form

/;[OOP$ v oogi].
i=l

Since, in general, the conjunction of two simple re-
activity formulae is not equivalent to any simple re-
activity formula, taking such conjunctions leads to a
stronger expressive power.

We call such formulae reactivity formulae, and the
properties they specify reactivity-specifiable proper-
ties.

The class of reactivity-specifiable properties is the
maximal class we need ever consider. This is due to
the following normal form theorem:

Theorem (reactivity)

Every temporal formula is equivalent to a
reactivity formula.

The proof of this theorem is based on a translation
between future and past temporal formulae. A de-
tailed proof of this theorem is beyond the scope of
this paper.

A natural example of a property specifiable by a re-
activity formula is the total statement of fairness for
a fair transition system. Since each individual fair-
ness requirement is expressible by a simple reactivity
formula (recurrence formula if it is a weak fairness
requirement,), the statement that all fairness require-
ments hold is expressible as the conjunction of several
simple reactivity formulae.

Our approach to specification of programs is inher-
ently conjunctive. This means that a specification is
presented as a conjunction of requirements, expressed

399

by temporal formulae, all of which should be valid
over the program, In verifying that a specification is
valid over a given program, we can verify the validity
of each requirement separately. Therefore, the fact
that one of the requirements is a conjunction by it-
self, rather than a simple reactivity formula, does not
greatly complicate or simplify the situation. Hence,
in the context of a full specification, which is always
a conjunction, we may assume each requirement to
be at most a simple reactivity formula.

The family of properties specifiable by reactivity
formulae forms an infinite hierarchy by itself. Level
k of the hierarchy, for k > 0, consists of all the prop-
erties that can be specified by a conjunction

/;\ popi v Oh]
i=l

for some n 5 k. This hierarchy is strict, since the
conjunction

n+1
A [“OPi V O&i]

i=l

with pi, qi, i = 1,. . . , n +. 1, being uninterpreted
propositions is not equivalent to any conjunction of
n or fewer simple reactivity formulae.

Relating the Syntactic and Semantic
Classifications

As we will see, the syntactic hierarchy of proper-
ties, based on their expression by particular form of
formulae, is identical to the semantic hierarchy, based
on the construction of infinitary properties by apply-
ing the operators A, E, R, and P, to finitary prop-
erties. When introducing the class corresponding to
each type of formula 6, where

KE
1

s&y, guarantee, obligation,
recurrence, persistence, reactivity >

we immediately showed that any K-specifiable prop-
erty is a K property according to the semantic classifi-
cation. For example, as soon as we defined the notion
of a safety formula, we have shown that any property
specifiable by a safety formula is a safety property
according to the semantic classification.

We are now ready to consider the other direction.
Suppose II is an infinitary property, that is known
to be specifiable by a temporal formula, and is also
known to be a K-property. Can we conclude that it is
a K-specifiable property? We have already answered
this question positively for the case K = reactivity.
This is due to the previous theorem that stated that

any temporal formula is equivalent to a reactivity for-
mula. The next theorem answers this question posi-
tively for the other classes as well.

Theorem

Every infinitary property of type K that is
specifiable by a temporal formula, is specifi-
able by a formula of type K (every specifiabIe
K-property is a n-specifiable property).

The correspondence between the syntactic and se-
mantic classification includes also the subhierarchies
within the obligation and reactivity classes. For ex-
ample, if a property is specifiable, and can also be
presented as the intersection ny=‘=, (A(@:) U E(Q,:‘));
then it can also be specified by a formula of the form
;I=:(Opi V 0 qi) for some past formulae pi and qi,

,***, n.
It is beyond the scope of this paper to give a proof

of this theorem. We refer the reader to [Zuc86], where
some of these issues are discussed.

The Syntactic Characterization of Live-
ness

Similarly to our previous efforts to give a syntactic
characterization to the semantic hierarchy, we provide
a syntactic characterization to the class of Jiveness
properties.

We define a Jiveness formula to be a formula of the
form

0
(

\j(Pi A 0%) 9

i=l >

where qi, i = 1,. . . , n, are satisfiable fvlvre formulae,
and p;, i = l,... ,n, are past formulae, such that

w;c’=, Pi) is a valid formula.
It is not difficult to see that any infinitary prop-

erty II specifiable by a liveness formula is a liveness
property. To see this, let u E C+ be any finite se-
quence of length Ial = m. By the requirement that
q l(V~=, pi) is valid, u end-satisfies the disjunction
Vy=‘=, pi, which means that it end-satisfies one of the
disjuncts, say pj. Since qj is satisfiable there exists
an infinite sequence u’ satisfying qj. Consider the se-
quence urr = u . d, obtained by concatenating u’ to
the end of u. It is obvious that position m - 1 in
u” satisfies pi, and position m satisfies qj. It follows
that position m - 1 satisfies pj h Oqj, and therefore
Utl satisfies 0 (Vy=‘=, (pi A 0 Qj)) .

Consider the formula (p --+ OOg) A ((1p) +
00(-q)), where p and q are propositions. This for-
mula specifies a property II which is a liveness prop-
erty but not a uniform liveness property. Indeed this

400

formula is equivalent to the liveness formula l P C Q - A set of persistent automaton-states.

0 (qfirst A p) A 0 q v [>
(0 (first A c-P>) A ow)] .

El;;:, the formula Cl (O(firsf A p) V 0 (firsl A (7~)))

The following theorem establishes the connection
between the semantic and syntactic characterization
of liveness .

Theorem

A property II that is specifiable in temporal
logic, is a liveness property iff it is specifiable
by a liveness formula.

Again, we provide no proof of this theorem.
Since our main interest is in properties that can be

specified by temporal logic, we will drop in the fu-
ture the specifiable qualifier. Thus, when we will talk
about safety properties, we mean specifiable safety
properties, and referring to liveness properties, we
mean specifiable liveness properties.

An alternative syntactic characterization of live-
ness is given by the formula

0 ;I(Pi
(

+ 0%) ,

i=l >

whereqi,i=l,..., n, are satisfiable future formulae,
andp;, i= l,..., n, are past formulae, such that, for
every i # j, q -(pi A pj) is a valid formula,

5 The Automata View

An alternative formalism for specifying temporal
properties is that of finite-state predicate automaton
(see [AS89], [MP87]). In the version we consider here,
a predicate-automaton M consists of the following
components:

l Q - A finite set of automaton-states.

l qo E Q - An initial automaton-state.

l T = {t(qi, qj) 1 qi, qj E Q} - A set of transition
conditions. For each qi, qj E Q, t(qi, qj) is a state
formula specifying the computation states under
which the automaton may proceed fromqi to qj.
We assume that each t(qi, qj) is either syntacti-
cally identical to the constant F, or holds over
some computation state s.

l R s Q - A set of recurrent automaton-states.

Let
u:so,s1,... EC”

be an infinite computation. Computations are fed as
input to the automaton which either accepts or rejects
them. An infinite sequence of automaton-states

T:qo,ql,**- EQW,

is called a run of M over u if:

1. The first state of the run, qo, is the initial state
ofM.

2. For every i > 0, si-1 I= t(qi-l,qi)*

Note that the automaton always starts at qo, and SO
causes it to move from qo to q1.

We define the infinity set of r, inf(r), to be the set
of automaton-states that occur infinitely many times
in P.

A run T is defined to be accepting if either inf(r) n
R # CJ~ or inf(r) E P. The automaton M accepts
the computation cr if there exists a run of M over u
which is accepting. This definition of acceptance has
been introduced by Streett ([Str82]).

An alternative definition, given in [MP87] is that
all runs of A over c are accepting.

The automaton ,U is called complete if for each q E

Q,
v t(q, d> = =.

4’EQ

It is called deterministic, if for every q and q’ # q”,
t(q,q’) -+ -t(q, q”), that is, we cannot have both
t(q, q’) and t(q,q”) true at the same time.

In this paper we restrict our attention to com-
plete deterministic automata. Deterministic au-
tomata have exactly one run P corresponding to each
input computation u, and hence the definition of ac-
ceptance in [MP87] coincides with the one used here.

Let G = R U P and B = Q - G. We refer to G
and B as the “good” and “bad” sets of states, respec-
tively. We define the following classes of automata by
introducing restrictions on their transition conditions
and accepting states.

l A safety automaton is such that there is no
transition fromq E B, to q’ E G, i.e., for every
q E B, q’ E G, t(q, q’) E F. That is, the automa-
ton cannot move from a bad state (q E B) to a
good state (q’ E G).

l A guarantee automaton is such that there is no
transition from q E G to q’ E B.

401

l A simple obligation automaton is such that:

- There is no transition from q @ P to q’ E P.

- There is no transition from q E R to q’ $ R.

The above definition implies that once a run ex-
its P, it can never reenter P again, and once it
enters R, it can never get out. This can be gen-
eralized to general obligation as follows:

l A (general) obligation automaton (of degree k)
is an automaton, in which each state q E Q has
a rank p(q), 0 5 p(q) < k, such that:

- There is a transition from q to q’ , i.e.,

t(n, q’> # F, only if &2> 5 kW.

- There is a transition from q E B to q’ E G
only if dq> < Ad>-

- There is no transition from a state q E G of
rank k to a state qf E B.

This definition leads to the fact that a run can
move from B to G (equivalently, move from G
into B), at most k times. It is easy to see that
the case of k = 1 corresponds to the definition
of a simple obligation automaton, with P being
the set of G-states with rank 0, and R being the
set of G-states with rank 1.

l A recurrence automaton is such that P = 4.

l A persistence automaton is such that R = 4.

l A simple reactivity automaton is an unrestricted
automaton of the above type.

We define the property specified by an automaton
M, IIM, as the set of all infinite computations that
are accepted by M.

In order to attain expressive power comparable to
(and even exceeding, see wo183]) that of temporal
logic we have to consider a more general type of au-
tomaton.

We define a Streett Predicate Automaton to be a
structure

M = (Q,qo,TJ)

where Q, qo, and T are as defined above, and L is a
finite list of pairs of acceptance sets.

L= (Rl,Pl),...(R~.,P~)

A run r of a Streett automaton is accepting if for
eachi= l,... , k, either inf(r)n& # 4 or inf(r) c Pi.
The notions of computations accepted by such au-
tomaton and the properties specified by it are similar
to the simpler case. This type of automaton has been

studied by Streett in [Str82], and is the dual of Ra-
bin’s automaton ([Rab72]).

Obviously, all the preceding types of automata are
special cases of a Streett automaton with k = 1. We
associate a general Streett automaton with the class
of (general) reactivity properties.

An infinitary property II 2 Cw is defined to be
specifiable by automata, if there exists a Streett au-
tomaton M, which accepts an infinite sequence u iff
cr E II. The following proposition relates the syn-
tactic characterization of the different types of au-
tomata to the semantic characterization of the prop-
erties they specify.

Proposition 5.1 A properly II, that is specifiable by
automata, is a K-property $7 it is specifiable by a IC-
automaton, where K E {safety, guarantee, obligation,
recurrence, persistence, reactivity}.

For most of these types, this proposition has been
proved in [Lan69], with some minor differences in the
definitions of a safety and guarantee automata. The
case of reactivity, and in fact the complete hierarchy
above, has been solved in [Wag79].

For completeness, we include below our version of
a proof of the proposition, which for most of the cases
is straightforward.
Proof

It is simple to show that a K-automaton specifies
a K-property. Let M be a rc-automaton. Since M is
deterministic and complete, there is, for each finite
computation u E C+, a unique state q, denoted by
S(qo,a), such that the run of M on u terminates (a
is finite) at q.

Define II(q) = (C E C+) S(qo, a) = q) for each

q E Q.
Obviously, an infinite 0 is accepted by M iff its cor-

responding run r, either visits infinitely many times
states in R, or is constrained from a certain point to
visit only P-states. This means that either cr contains
infinitely many prefixes in II(q) for q E R, or that all
but finitely many prefixes of (T are in II(q) for some
q E P. It follows that

UM = R(u n(q)) ‘-‘St u %I>).

9ER QEP

Consequently, every property specifiable by a single
automaton is a reactivity property. However, as we
will show for the special cases of K-automata, this
expression can be further simplified.
n For a safety automaton, it is clear that no finite
prefix of an acceptable computation can be in lls =

u (1 II q . This is because, once a run visits a bad state
qeB

402

q E B, it can never return to a good state. Hence for By the construction of G, if u E Pref(II), then
safety automata we also have 6(qo,u) E G.

Assume that (T $ Pref(Ii). This means that
cr cannot be a prefix of a computation in Il. Let
b(qo,a) = q. We would like to show that q $ G.

which establishes ll~ as a safety property.
n For a guarantee automaton, once a run visits a
good state it can never visit a bad state. It follows
that

b4 = E(u wlN9
qeG

which shows that ll~ is a guarantee property.
m For a recurrence automaton, we are given that

P = 4, and therefore IBM = R(U II(q)).
(IER

n For a persistence automaton, we are given that
R = 4, and therefore IlM = P(U II(q)).

PEP

Assume to the contrary that q E G. This can
only be caused by another finite computation u’ E
Pref(Il) such that also, S(qo,a’) = q. If cl’ E
Pref(II), there must exist an extension cr” E C“‘,
such that u’ . u” E II. Consider the mixed computa-
tion u . d’ E C”. Let r be the run of (Q,qo,T) over
u . a”, and rt the run of (Q, qo, T) over ut * a”. Since

qqoP) = 6(qo,u’) = q, these runs coincide after a
finite segment. It follows that inf(r) = inf(r’), and
hence u . utt should be accepted. This contradicts our
assumption that (T $2 Pref(lI). Hence our claim is
established.

It is now easy to show that u E Cw is accepted by
Mt iffuE II.

Consider now the other direction of the proposi-
tion. It states that a K-property specifiable by au-
tomata can be specified by a K-automaton. Assume
that a K-property IT is specifiable by automata. Thus,
there exists a Streett automaton

Denote by 6’ the transition function based on Tt.
Assume that u is accepted by Mt, and let r be its
corresponding run. To be accepting, r must go in-
finitely many times through G-states. By the way
we defined T’, this means that M’ only visits G-
states. Since T and T’ are identical as long as we
only visit G-states, this means that for every u’ 4 u,

qqo, 4 = #(qo, u’) E G. It follows that every ut 4 u
is in Pref(II), and since II is a safety property, that
u E II.

M=(Q,qo,T,L), L={(Ri,E), i=L.$)

specifying II.
Let a:& x C+ H Q be the function, based on T,

that, for each state q E Q and each finite computation
cr E C+, yields the state b(q,a) E Q reached by the
automaton starting at q and reading the computation
u.
n Consider first the case that II is a safety property,
and hence, satisfies II = A(Pref(II)).

We construct an automaton:

In the other direction, assume that (T is rejected
by M’. This implies the existence of a minimal
ut 4 u such that #(q,, d) $ G. Since u’ is mini-
mal, the run caused by u’ visits only G-states except
the last. It follows that b’(qo, u’) = 6(qo,u’), and
hence u’ $ Pref(II). Thus, u’ cannot be the prefix
of a computation in II, and therefore u 4 II.
w Consider the case that Il is a guarantee property.

In that case, we have that lI = E(lI’) for some
finitary property II’. We define the sets G and B, as
follows:

M’ = (Q, qo, T’, G, G),

where Q and qo are as before. G and B are defined

by

G = {qo} u{q E Q 1 2;;;e;&)for ‘Orne },
G = {q 1 h(q0, b) = q for some u E II’},
B = Q-G.

B = Q-G.
Construct the automaton:

The transition conditions T’ = (t’(q, q’) 1 q, q’ E Q}
are given by: M’= (Q,qd,GG)

T qEB> q’=q where Tt is given by:
ewl’) = F

{
qEB, q’#q

hq’> q 4 B
CLd) = F

We claim that, for a finite computation u E C+, {

T qEG, q’=q
qEG,q’#q

t(q,q’) q 4 G

u E Pref(II) - Vqo, a> E G. We show that u E C” is accepted by M’ iff cr E II.

403

Assume that c is accepted by M’. Then there ex-
ists some prefix u1 + u which causes M’ to visit a
state in G for the first time while reading CT. Let
q = 6’(qo, ~1). Since q is the first visit to a G-state,
it follows that the behavior of M’ on al is identical
to that of M on (~1, and therefore also 6(qo, (~1) = q.
By the definition of G, there exists a finite sequence
u2 E II’ such that d(qc,az) = q. Let u’ E Cu be the
suffix of g following ul, i.e., u = ~1. u’. Denote by rl
the run of M over u = (~1 s u’, and by T-J the run of
M over us . u’. Obviously, ~1 and T-J can differ only
by a finite prefix. M accepts u2 . u’ because u2 E II’.
Since Inf~(rl) = Inf~(rz), M must also accept
u1 . u’ = u. Thus, u E II.

Assume that u E II. There must exist a prefix u’ + u
such that u’ E II’. let u’ be the minimal such prefix
of a. Let q = 6(qo, u’). Obviously q E G, and q is
the first G- state that M visits on reading u. It
follows that also q = 6’(qo, a’). By the way M’ is
constructed, once it visits a G-state, it stays in G
forever. Consequently, M’ accepts u.

n Next, consider the case that II is a recurrenceprop-
erty. This means that II = R(H) for some finitary
II’.

We perform a series of modifications on the indi-
vidual pairs of sets fi, Pi, i = 1,. . . , h, until all the
members Pi = 4. These modifications will preserve
the property defined by the automaton.

Without loss of generality, we define the modifi-
cations on the first pair RI, 9. After obtaining a
Pi = 4, we move on to the other pairs.

Assume that all the states in the automaton are
reachable. A cycle C in the automaton is a set of
states such that there exists a cyclic path in the au-
tomaton that passes only through the states in C, and
at least once through each of them. We only consider
accessible cycles. These are cycles such that the path
leading from qo to some q in C, and the cyclic path
traversing C are accessible, i.e., never pass through
transitions such that t(qi,qj) = F. A good cycle is
a cycle such that a run r with inf(r) = C is accept-
ing. A persistent cycle is a good cycle C such that
c n RI = 4, and hence C C PI. Define A1 to be the
set of automaton states participating in persistent cy-
cles .

Let M be the automaton accepting II with accept-
ing pairs (Ri, Pi), i = 1,. . . , k, and consider the au-
tomaton M’ coinciding with M in all but the ac-
cepting pairs. The list of accepting pairs for M’ is
(R; , Pi), (Ri, Pi), i = 2, . . . , k, where we define:

R: = RI u-41

Pi = $4.

We wish to show that M and M’ accept precisely the
same computations.

Consider first a computation u accepted by M. Let
J be the infinity set infM(r(u)). Clearly J satisfies
the requirements presented by (&, Pi), i > 1, in both
automata. The acceptance for i = 1 implies that ei-
ther J rl Rr # 4 or J s PI. In the first case obviously
J n R’, # 4. In the second case, if J n RI = 4, then
J is a persistent cycle. It follows that J C Al, and
hence J n R’, # 4.

Consider next, an infinite computation u accepted
by M’. We will prove that u is also accepted by M.
Assume, to the contrary, that u is rejected by M. Let
J be as before. Since M’ accepts u, J n Ri # C#J. The
rejection by M imply that J n RI = 4. Hence there
must be some q E Al in J. Let ?r be a cyclic path
from q to itself precisely traversing J. In order for
u to be rejected by M, J must also contain a state
q’ 9 RI U PI. Since q E Al there must exist another
cycle J’, such that q E J’, and J’ is a persistent cycle.
Let ?y’ be the cyclic path from q to itself precisely
traversing J’. Let u’ a finite computation that causes
the automaton to move from q back to q along n’.

The state q and computation u’ have the following
property:
For every finite computation 8, such that 6(qo, &) = q,
there exists a positive integer n (possibly dependent
on 6) such that &-.(u’)~ contains a prefix u 4 &-.(u’)“,
) al > 161, which belongs to II’.

To see this, we observe that the computation
ii . (u’)~ has J’ as infinity set, and is therefore in
II. Consequently, 65. (c’)~ must have infinitely many
prefixes in II’, most of which are longer than 3. The
shortest of these is a prefix of B . (u’)~ for an appro-
priate n > 0.

Let now uc be a computation such that S(qo, u) =
q, and B a computation leading the automaton from
q to q along the path A, which precisely traverses J.
Consider the following infinite computation:

0” = ~o&(~‘)~l &((q”1 . . .

where the nj ‘S are chosen so that u” has infinitely
many prefixes in II’. That is, for each

up1 = uocqu’)“’ . . * (u’)nj-l&

we choose an nj > 0 such that uTP1 . (u’)nj has a
prefix in II’, longer than c$‘-~.

It follows, on one hand, that since u” has infinitely
many prefixes in Il’, u” E II.

On the other hand, the infinity set corresponding
to a” is J U J’ which has an empty intersection with
Ri and at least one state q’ 6 PI. This contradicts
the assumption that M specifies II.

404

Consequently, there cannot exist a computation u
which is accepted by M’ and rejected by M.

It follows that M’ is equivalent to M. We can re-
peat the process for each i = 2,. . . , k until we obtain
an automaton with all P,! = 4, i = 1,. . . , k.

It only remains to show that such an automaton is
equivalent to an automaton with a single R and a sin-
gle P = 4. This is essentially a closure property that
states that the intersection of recurrence automata
is equivalent to a single recurrence automaton. The
construction is similar in spirit to the formula for the
intersection of recurrence formulas. The automaton
detects visits to Rz-states such that the most recent
previous visit to an RI U Rz-state was in fact a visit
to an RI-state (for k = 2).
n The case of a persistence property II that is speci-
fiable by an automaton is handled by duality. We
consider ‘iT = Cw - II which can be shown to be a re-
currence property also specifiable by an automaton.

By the construction for recurrence properties, there
exists a recurrence automaton

M = (Q, QO, T R 4)

specifying m. The following persistence automaton
obviously specifies II

M’= (&,ao,T,hQ- R).

H The case of reactivity properties specifiable by
automata is handled as follows.

Let II be a reactivity property specifiable by the
automaton

M = (&,4o,T,{(&,&), i= 1, k}).

Clearly the role of the list of pairs (R+, Pi), i =
1 , k, is to define the subsets J C Q such that
eikry computation u with inf(r(a)) = J ’ is accepted.
Let F denote the family of these sets. Obviously, J E
Fe+(RinJ#t$or J& Pi)foreachi=l,...,k.

A characterization property that can be derived
from Wagner [Wag791 (see also [Kam85]) is the fol-
lowing:

If M specifies a reactivity property, then for each
accessible accepting set J E F,

Either A E F for every accessible cycle A 2 J,
Or B E F for every accessible cycle B C J.

An equivalent statement of this fact is that we can-
not have a chain of three accessible cycles

BE JcA,

such that J E F, but B 4 F and A $Z’ F.

According to this characterization we can partition
the family of accessible accepting sets into:

F={&...,A,,& ,... ,Bn),

where, for each Ai and an arbitrary accessible cycle
X, Ai G X - X E F and for each Bj, and an
arbitrary accessible cycle,X, X E Bj - X E F.

This leads to the construction of the following au-
tomaton:

M’ = (Q‘,q&T’,R’,P’)

Q’=QxQmx2xnx2.
Each state q’ E Q’ has the following structure:

4’ = kM1 ,+-dhfR,j,fP),

where q E Q, qi E Ai, i = 1,. . . , m, f~, fp E (0, 1)

and 1 5 j 5 n.
We assume that the states of M are ordered in

some linear order. For each Ai, i = 1,. . . , m, we
define min(Ai) to be the state of Ai appearing first
in the linear order. For q E Ai we define nert(q,Ai)
to be the first state d E Ai appearing after Q in the
linear order. If q E Ai is the last Ai-state in the linear
order then nezt(q,Ai) = min(A;).

The role of the different components in p’ is as fol-
lows:

l The state q simulates the behavior of the original
automaton. Each qi E Ai anticipates the next Ai-
state we expect to meet. If the run visits all the
Ai’s infinitely many times, each anticipated qi will be
matched infinitely many times.

l The recurrence flag fn is set to 1 each time one of
the anticipated Ai-states is matched.

The index j checks whether the run of M stays
completely within one of the sets BI, B, from a
certain point on. It moves cyclically over 1, n, and
at any point checks whether the next automaton state
is in Bj. If the next automaton state is in Bj, then
j retains its value and the next value of fp will be
1. Otherwise, j is incremented (modulo n), and the
next value of fp is 0.

qI, = (~0, main (AI), . . . ,~~~(&),O,l,O)

l T’ is defined as follows:

A ((?R = 1) = T(@ = qi))

i=l

405

fi ((<nl E Bj) A (? = j>)v
((G $2 Bj) A (3 = b modm] + 1)))

A ((fp = 1) = (@E Bj)).

- The first clause in this definition states that the
first component q follows the same path that
would be followed by the original automaton.

- The second clause states that either the newly
visited automaton-state @ matches the antici-
pated state of A;, and then we modify q; to the
next Ai-state in sequence, or there is no match
and then qi remains the same.

- The third clause states that fR is set to one iff t
matches one of the anticipated states. If different
from 1 it must be 0.

- The fourth clause states that if @ belongs to Bj
then j is preserved. Otherwise it is incremented
by one in a cyclic manner.

- The last clause states that fp is set to 1 whenever
iis in Bj-

l The acceptance sets are defined by

R’ = ufL01,th.fR,ifP) E &’ I fR = 11

P’ = tk!19qm.fR,j,fP) E Q’ I fp = 11.

Let d be a computation and r’ the corresponding
run of M’ over u. If r’ visits R’ infinitely many times,
this implies that r, the run of M over u, visits in-
finitely many times all the states of some Ai. This
shows that inf(r) _> Ai and hence u is accepted by
M as well as by M’.

If r’ stays contained in P’ from a certain point on,
it means that the value of j is never changed beyond
that point and hence r is contained in Bj from that
point on. Again, this means that u is accepted by M
as well as by M’.

As similar argument shows that all computations
accepted by M are also accepted by M’. J

5.1 Deciding the Type of a Property

In this section we consider the following problem:

Problem 5.1 Given a Streett automaton M, decide
whether the property specified by this automaton is a
K-property, where K E {safety, guarantee, obligation,
recurrence, persistence, reactivity}

The following proposition gives an answer to this gen-
eral question:

Proposition 5.2 It is decidable whether a given
Streett automaton specifies a property of type tc,
where rc E {safety, guarantee, recurrence, persistence,
reactivity).

Again, for the first types, the answer has been given
by Landweber in [Lan69]. For the case of reactivity,
as well as the complete hierarchy below, it is provided
by Wagner in [wag79].

In the context of specification, this question was
tackled in [AS87], where a decision procedure is given
for safety and liveness which is not covered by the
previous results.

Since the decision procedures for the cases we con-
sider here are relatively simple, we repeat them below,
using our terminology.

First, some definitions.
A set of automaton states A C Q is defined to be

closed if for every q,q’ E Q

q E A A t(q,q’) # F - q’ E A

The closure a of a set of states is the smallest closed
set containing A.

For a given Streett automaton M, we define

i=l

Checking for a safety property.
Let B = Q - G. The automaton M specifies a
safety property iff 6 n G = q5.

Checking for a guarantee property.
M specifies a guarantee property iff 6’ n B = 4.

To check for the other levels of the hierarchy, we de-
fine the family of accepting sets F.

F = (J] J is an accessible cycle, J n & # 4 or
JCPiforeachi=l,...,k}.

The following are direct consequences of the charac-
terizations in [Wag79]:

l Checking for a recurrence property.
M specifies a recurrence property iff for every
J E F and every accessible cycle A 2 J, A E F.

l Checking for a persistence property.
M specifies a persistence property iff for every
J E F and every accessible cycle B C J, B E F.

l Checking for a reactivity property.
M specifies a reactivity property iff there do not
exist three accessible cycles

BCJGA

such that J E F, but B, A $! F.

406

As a matter of fact, the methods of [Wag79j identify
the exact location of an automaton specifiable prop-
erty in the reactivity hierarchy, i.e., the minimal k
such that the property can be specified by a Streett
automaton with IL1 = k.

According to the characterization, this minimal k is
the maximal n admitting a chain of accessible cycles
of the form

where B; I$ F and Jr E F for i = 1,. . . , n.

Connections Between Temporal Logic
and Automata

Temporal logic and predicate automata have been
considered as alternatives for specifying properties of
programs. A comparison of their expressive power is
considered next.

Proposition 5.3 A property that is specifiable by a
~-formula is specifiable by an K-automaton, for K.
ranging over the differed types.

This is based on the following construction, studied
in [LPZ85] and [ZucSS].

For each finite set of past formulae ~1,. . . ,pk it
is possible to construct a deterministic automaton
M with a set of states Q and designated subsets

FI,..., Fk E Q. The automaton M has the property
that for each i = 1,. . . , k, each infinite computation
aECW, and each position j 2 0,

6(qo,u[O-- of) E Fi GT (~,j) I= Pi.

Thus, the automaton M identifies, while reading u
up to position j, which pi’s hold at that position.

Using this basic construction, it is straightforward
to build a n-automaton corresponding to a K-formula.

For example, for the reactivity formula 00~1 V
OOpa, let the automaton mentioned above be
(Q, qO, ‘2’) with the designated sets Fl and F2. Then
the corresponding reactivity automaton is

(Q, qo, T, FI, f’2>.

In the other direction, not every property speci-
fiable by an automaton can be specified in tempo-
ral logic. Only a restricted class of automata, cdled
counter-free automata (see [MP71]) can be translated
into temporal Logic. A (Street) automaton is defined
by be counter-free if there exists no finite computa-
tion c and a state q, such that q = 6(q,u”) for some

n > 1 but 6(g, u) # q. The existence of such Q and
u would have enabled the automaton to count occur-
rences of u modulo n.

It has been shown in [Zuc86] that:

An automaton specifies a property specifi-
able by temporal logic iff it is counter-free.

This result can be refined to provide a translation
from counter-free R-automata to K-formulae.

Proposition 5.4 A property that is specifiable by
a counter-free tc-automaton is specifiable by a n-
formula.

The translation is essentially the one studied in
[Zuc86], but showing that the structure required in
a K-automaton corresponds to the structure required
in a K-formula.

It is based on the construction of a past formula po4
for each q E Q - {qo} of a given counter-free automa-
ton table (Q, qo, 7’). The formula ‘pp characterizes all
the finite computations leading from qo to q, i.e., for
each infinite computation u E C” and position j > 0,

6(qo, 4O.41) = Q - (u,j) != Pq.

For example, the formula corresponding to the
(counter-free) reactivity automaton (Q, qo, T, R, I’} is

The above two ways translation, subject to
counter-freedom, provides a standard reduction of re-
sults about automata into the corresponding results
about temporal logic. We can use this reduction to
prove the other direction of the claim relating the
temporal classes to their semantic specification.
We illustrate this method on the following part of the
proposition.

A reactivity property II that is specifiable by
temporal logic, is specifiable by a reactivity
formula.

Proof
Let p be the formula specifying II. Using the trans-

lation described in proposition 5.3, we construct a
counter-free automaton M ‘p, specifying the reactiv-
ity property II. Using the construction described in
proposition 5.1 for the case of a reactiyity property,
we construct a reactivity automaton M that speci-
fies the same property. The construction of fi only
refines the structure of M,, splitting each state of

407

M, into many distinct states, respecting the transi-
tions. It follows that since M, is counter-free so is
&. We can now use the translation from counter-free
automata to temporal formulae, described in propo-
sition 5.4, to construct a reactivity formula 9~ spec-
ifying II.

This method was used in [Zuc87] to establish
the strict hierarchy for temporal formulae, based on
[Kam85].

References

[AS851 B. Alp ern and F.B. Schneider, Defining
liveness, Info. Proc. Lett. 21, 1985, pp. 181-
185.

[AS873 B. Alpern and F.B. Schneider, Recognizing
safety and liveness, Dist. Comp. 2, 1987,
pp. 117-126.

[AS891 B. Alp ern and F.B. Schneider, Verifying
temporal properties without temporal logic,
ACM Bans. Prog. Lang. Sys. 11, 1989,
pp. 147-167.

[Kam85] M. Kaminski, A classification of w-regular
languages, Theor. Comp. Sci. 36, i985,
pp. 217-229.

[Lam771

[Lam831

[Lan69]

[LPZ85]

[Man741

[MP71]

[MP83]

L. Lamport, Proving the correctness of mul-
tiprocess programs, IEEE Trans. Software
Engin. 3, 1977, pp. 125-143.

L. Lamport, What good is temporal logic,
Proc. IFIP 9th World Congress (R.E.A.
Mason, ed.), North-Holland, 1983, pp. 657-
668.

L.H. Landweber, Decision problems for
w-automata, Math. Sys. Theory 4, 1969,
pp. 376-384.

0. Lichtenstein, A. Pnueli, and L. Zuck,
The glory of the past, Proc. Conf. Logics

of Programs, Let. Notes in Comp. Sci. 193,
Springer, 1985, pp. 196-218.

Z. Manna, Mathematical Theory of Compu-
iation, McGraw-Hill, 1974.

R. McNaughton and S. Papert, Counter
Free Automata, MIT Press, 1971.

Z. Manna and A. Pnueli, How to cook a
temporal proof system for your pet lan-
guage, Proc. 10th ACM Symp. Print. of
Prog. Lang., 1983, pp. 141-154.

[MP84]

[MP87]

[MPSSa]

fMP89b]

[tiL82]

[Pnu77]

[Ftab72]

[SisSS]

[Str82]

WOI

[Wol83]

[Zuc86]

[Zuc87]

Z. Manna and A. Pnueli, Adequate proof
principles for invariance and liveness prop-
erties of concurrent programs, Sci. Comp.
Prog. 32, 1984, pp. 257-289.

Z. Manna and A. Pnueli, Specification and
verification of concurrent programs by V-
automata, Proc. 14th ACM Symp. Print.
of Prog. Lang., 1987, pp. 1-12.

2. Manna and A. Pnueli, The anchored
version of the temporal framework, Lin-
ear Time, Branching Time and Partial Or-
der in Logics and Models for Concurrency
(J.W. de Bakker, W.-P. de Roever, and G.
Rozenberg, eds.), Let. Notes in Comp. Sci.
354, Springer, 1989, pp. 201-284.

Z. Manna and A. Pnueli, Completing the
temporal picture, Proc. 16th Int. Colloq.
Aut. Lang. Prog., Let. Notes in Comp. Sci.
372, Springer, 1989, pp. 534-558.

S. Owicki and L. Lamport, Proving liveness
properties of concurrent programs, ACM
Tmns. Prog. Lang. Sys. 4, 1982, pp. 455-
495.

A. Pnueli, The temporal logic of programs,
Proc. 18th IEEE Symp. Found. of Comp.
Sci., 1977, pp. 46-57.

M.O. Rabin, Automata on Ifinite Objects
and Churc’s Problem, Volume 13 of Re-
gional Conference Series in Mathematics,
Amer. Math. Sot., 1972.

A.P. Sistla, On caracterization of safety and
liveness properties in temporal logic, Proc.
4th ACM Symp. Print. of Dist. Comp.,
1985, pp. 3948.

R.S. Streett, Propositional dynamic logic of
looping and converse is elementarily decid-
able, Inj. and Cont. 54, 1982, pp. 121-141.

K. Wagner, On w-regular sets, 1nj. and
Cont. 43, 1979, pp. 123-177.

P. Wolper, Temporal logic can be more ex-
pressive, Inf. and Cont. 56,1983, pp. 72-99.

L. Zuck, Past Temporal Logic, Ph.D. thesis,
Weizmann Institute, 1986.

L. Zuck, Manuscript, 1987.

408

