
Progressive Transmission of Large Models by

using a Bounding Planes Hierarchy.

F.J. Melero, P. Cano and J.C. Torres
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Abstract

In this paper we present a new data structure that makes it possible to transmit
and visualize large three-dimensional models through a network, the BP-Octree
(Bounding-Planes Octree). The BP-Octree is based on a spatial decomposition of
the model using an octree, and offers a very tight hierarchy of convex bounding
volumes which leads to simplified models. It is done by assigning to each node of
the tree a set of planes that, intersected one among others, creates a very bounding
volume of the part of the model contained in that node. These planes are taken
from the real polygons of the model, and are selected at each level guaranteeing
that they bound completely all boundings of deeper levels.

By using this scheme, the transmission of a model through a network is not
achieved by sending the polygons, but using just the planes coefficients needed at
each level, or just the index of each plane if it has been previously transmitted. On
the client side, the visualization algorithm is the responsible for reconstructing the
polygonal geometry from the set of planes just applying a mesh clipping algorithm.
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1 Introduction

One of the fields that have not been yet completely resolved by the Com-
puter Graphics community is the visualization of 3D models through inter-
net. Several standards and file format have been proposed to represent three-
dimensional objects (VRML, X3D, etc..), and many papers can be found in
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the literature with techniques useful in remote visualization [1,2], but none
of them has been widely accepted by the internet industry.

Computer graphics end users always require very detailed models, what makes
the management of large datasets necessary. The interactive visualization of
those complex models requires a great effort of the graphics hardware, due
to the large number of polygons needed to represent the geometry at the
expected level of detail and realism. This resource requirement may lead to a
lack of interactivity. But if this problem is translated into a distributed system,
it is neccesary to involve some other techniques of progressive and adaptive
visualization in order to optimize as much as possible the bandwith usage.

The conflict between the rendered level of detail and the visualization speed
has motivated the development of several techniques to reach both goals. Un-
der the generic name of level-of-detail (LOD) techniques we gather techniques
that represent a complex geometry in a simplified way when the observer is
not close enough to the object.

Geometry-based LOD techniques can be classified as: discrete [3], i.e. the ob-
ject is represented in several instances, each one at different LOD; progressive

[1], i.e. the detail is extracted from an unique data structure during runtime;
and view-dependent [4], which are an extension of progressive techniques, in a
way that the LOD is not uniform along the object, it is anisotropic depending
on the point of view.

Another approach to represent volumes and solids with variable LOD is to
represent them with schemes based on spatial decomposition, using hierar-
chical structures. Among these methods we can find the Octree and several
extensions to these (Extended-Octrees, PM-Octrees, SP-Octrees [5–7]).

All these techniques are successfully used in progressive or adaptive visualiza-
tion, not only for remote visualization, but also for standalone applications,
solving the limitations on memory and processing time. Relevant work on this
area can be found in [8–11].

Our proposed data structure is based on an octree, assigning to each node a
set of planes that form a convex bounding volume of the part of the model
contained in it (see a detailed node in figure 1, and two different bounding
levels in figure 2). These planes are restricted to be face planes or planes
parallel to faces, in order to avoid including more geometric information. That
is why it is named BP-Octree (Bounding-Planes Octree).
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Fig. 1. Example of node. Green, model geometry; cyan, computed bounding.

(a) (b)

Fig. 2. Phlematic Dragon and its bounding planes (cyan) at root node (a) and at
level 4 of the BP-Octree (b).

2 BP-Octree. Data Structure Overview

As told before, in each node we store a set of planes whose intersection half
spaces -intersected with the cell of the node- include the part of the model that
falls in the octree cell. At leaf nodes, in addition, is stored the final geometry
that was initially assigned to them. Pseudocode of the data structure is shown
in figure 3 and a general schema of the whole data structure is illustrated in
figure 4. Figure 5 shows the root node of the BP-Octree for several models.

As planes we want to restrict us to planes of the polygons of the model wher-
ever possible. This works fine when the model restricted to the cell forms
a convex geometry, but it is not usually the case. When having a non pure
convex geometry, new planes have to be introduced. Then, to avoid defining
new planes, we use planes that are offsets to faces of the model (field d of the
BPlane structure is just that offset).

At each node we store just the indices of the planes, so it means that all the
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typedef long int Index;

typedef struct {

Index planeIndex;

double d;

} BPlane;

typedef long int Octcode; // 4 bytes long

class BPNode {

vector<BPlane> boundingPlanes;

Octcode oct;

}

class BPLeafNode:public BPNode {

vector<Index> faces;

};

Fig. 3. Basic Data Structure of our BP-Octree

Fig. 4. General Scheme of BP-Octree data structure.

planes are stored in an external data structure, accessed by the octree. By
doing so we save space and eliminate redundancies. The same idea applies
to the final geometry stored at leaf nodes. When using huge models, this
approach will make it easier to have the data structure in main memory and
to access the planes and geometry information via external files, delegating
into the operating system the caching procedure of these data.
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(a) (b)

(c) (d)

Fig. 5. Boundings at level 0.

Another goal of this work is to achieve the building of the whole data structure
in a reasonable computation time. This is achieved by using a bottom-up
approach: first, we classify the polygons in a three-dimensional grid, which
is the deepest level of the octree; then, these polygons are assigned to each
leaf node; then, all leaf nodes are proccessed in order to have a minimum
number of planes, and then their bounding planes are selected, and finally,
internal nodes are built by following the path from the root node to each leaf,
computing their bounding planes in a bottom-up recursion

When designing the data structure, several problems arose that required our
attention in order to get a complete and correct solution:

• Management of large datasets. Our data structure should be able to deal
with large models. Our goal was not only to optimize space consumption by
using a hierarchical representation, but also reduce building time. To solve
this, we have used a spatial indexation of the polygons, making easier to
address and classify the polygons and also the management of such amounts
of data via external memory.

• Guarantee that every polygon contained in the node is used when computing

its bounding. As the octree is a discrete environment, we have to assign
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continuous primitives (polygons) to voxels, and do it quickly enough. The
obvious solution would be to clip all polygons to fit them exactly into our
three-dimensional voxels, but this would lead to prohibitive computation
time. We use a 3DDDA algorithm to traverse each polygon and determine
which voxels are containing it.

• Ensure that computed boundings at level n are completely inside of bounding

at level n-1. It is important to keep coherence between levels, because it
makes no sense to be in a given level of the BP-Octree and when asking
a more detailed level, we got a less tight bounding. To achieve this, we
compute the bounding at leaf nodes by using the real geometry of the model,
but for internal nodes, we use the geometry generated by the bounding
planes of their children nodes.

• Avoid cracks between adjacent nodes. As we use approximated bounding, it
is almost impossible that two adjacent nodes get identical bounding plane at
their shared face, so when rendering it, user would see a hole in the surface.
We add a set of fictitious planes, which are never transmitted, corresponding
to the node bounding box faces that are still visible (see purple polygons in
figure 1).

• Which plane to use when polygons in the node create a concavity?. When
node geometry is not a pure convex geometry, it is rather complex to find a
face whose plane bounds the whole geometry. Then, we allow these planes
to be translated along its normal direction in order to become a bounding
plane. We name them displaced planes.

• Convex meshes get less simplification rate than irregular ones. If we have
a sphere as object, all its face planes satisfy the bounding criterion, so
we would get as bounding the sphere itself. To avoid such situations, we
limit the number of planes at each level, and these are selected by using an
statistical criterion. An example of this situation can be found in figure 6

2.1 Spatial Indexation

Being the octree a discrete structure, and the 3D space a continuous environ-
ment, it is clear that the first task to do is to discretize our model, i.e., to
determine which nodes are intersected by the polygons. This is done by using
an octcode, computed as a traditional Morton code [12].

The root node of the octree is an Axis Aligned Bounding Box [13], i.e. it is
not necessarily a cube, but it has its eight faces axis aligned. It is computed
while loading the model, and it is defined by two significant points: BBmin =
(xmin, ymin, zmin) and BBmax = (xmax, ymax, zmax).

The basic step to index all polygons is to determine the cell of the discrete
grid which a given point p belongs to. For each dimension D, at a given level l
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Fig. 6. High density of planes due to strong convex bounding areas of the model.

the discrete coordinate ND is computed as described by the following formula:

ND = floor(
2l

wd

(dp − dmin)) (1)

where wd is the length of the root node at that dimension, dmin is the minimum
value of that node for the dimension D and dp is the coordinate at dimension
D of the point p.

2.1.1 Morton Code

The Morton Code of a given voxel is computed by interleaving the discrete
coordinates (expressed in binary) of any of the points that belong to that
voxel.

In figure 7 we can see in 2D how for each node X and Y coordinates are
interleaved, resulting in an integer number, unique for each voxel in its level,
but not unique among all levels. In level 3 we can see that the number 9 can
identify a cell in 2nd or 3rd level, being both of different sizes and location.

To solve this ambiguity, we append extra information to the octcode about
the level that it belongs to, also in binary. It converts the Morton Code into
a locational code. There are two options:

• Append the level bits as the most significant. (figure 8a). This causes a
breadth-first ordering of the octcodes.

• Append the level bits as the less significant (figure 8b). This causes a depth-
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(Level 1) (Level 2) (Level 3)

Fig. 7. Morton-code based nodes numbering

first ordering of the octcodes.

(a) (b)

Fig. 8. Morton-based locational code: a) Depth-first ordering; b) breadth-first or-
dering

In our approach, we have chosen the breadth-first ordering of the octcodes,
because when saving them into a file, this sorting keeps the spatial coherence
for a progressive transmission of the model.

2.1.2 Defining Maximum Depth

Given the locational code expressed as before, we can easily calculate the
memory needed to address each voxel. The octcode can be splitted into two
parts: the level and the cell index related to that level (figure 8). Each depth
level l adds three bits to the cell index (so it is 3l bits), and the level l is
represented with log2l bits.

Therefore, with 4 bytes we can have 227 = 134217728 leaf nodes, i.e. more than
134 million leaf nodes. Up to now, models over 1.5M polygons have never used
more than 5% of maximum depth nodes. So we could assume that 4 bytes,
a long int in most of the implementations, is a safe code length for such
models.
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2.2 Addressing Polygons

To identify which polygons belong to each node, we run a 3DDDA algorithm
[14] over each polygon, identifying whose voxels are traversed by the polygon
by computing the octcode as shown in equation 1. Later on, this polygon is
taken into account when computing the bounding volume at those traversed
nodes.

By applying this algorithm, we guarantee that all nodes traversed by the
polygon will use it to compute the bounding volume. If we were not restricted
to have at each node a bounding volume of the model, it would be faster and
less memory consuming to select just a small subset of these traversed nodes,
e.g. by selecting only the nodes where the vertices lie.

3 Building the Octree

After indexing the polygons, we can determine exactly the leaf nodes that our
octree will hold. First we create all leaf nodes, identified by their octcode, and
attach to each leaf node the index of each polygon that traverse it.

It is possible to reduce the number of leaf nodes just grouping leaf nodes until
a given criterion is fulfilled. Some of these criteria might be:

• Group while new leaf node has less than N polygons assigned, or
• Group until new leaf node has more than M polygons assigned, or
• Group until average number of polygons at brother nodes is over X, etc...

By choosing any of these options, we get a significant reduction in the number
of leaf nodes, up to 85%. In the experiments shown in this work we have used
the criterion group while new leaf node has less than 50 polygons. Taking one
or other criterion only affects the lower levels of the octree, being not relevant
at top levels. The selected criterion gives an average of about six polygons per
leaf node in all models.

It is simple, by looking at the octcode of each leaf, to extract the path from
the root to the leaf node, and create the internal nodes that are necessary to
reach the leaf depicted in figure 9.
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Fig. 9. Building octree

4 Computing Bounding Volumes

At each node we store a set of planes that includes completely the portion of
the 3D model contained in the node. To compute this set, we follow a recursive
bottom-up procedure, so at each node just a small number of computations is
performed, i.e. we follow the divide-and-conquer paradigm.

As is briefly described in figure 10, at each node we select just the planes
that bound the geometry of its children (or the real geometry of the model
contained in the node if we are at a leaf) using the addBVPlanes method.
Furthermore, only planes belonging to descendant’s boundings are used to
compute the current node bounding , and only bounding vertices of its descen-
dants (addBVVertices) are used to guarantee that the bounding is increasing
in volume as we ascend through the octree.

The method that we follow to compute the bounding is quite simple, as shown
in 2D in figure 11. For each node n we create a set of candidate planes, that
are those that were selected as bounding planes at children of n (or the orig-
inal geometry in case we are in a leaf node). The, we test sequentially every
candidate plane against contained bounding vertices. The plane is taken as it

computeBounding(Node_T node){

if isLeaf(node)

node->selectBoundingPlanes();

else {

for each ch child of node {

computeBounding(ch);

node->addBPlanes(ch.getBPlanes());

node->addBVertices(ch.getBVertices());

}

node->selectBoundingPlanes();

}

}

Fig. 10. Computing recursively the bounding at each node
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(a) (b) (c)

Fig. 11. Computing boundings. a) Node, b) bounding without displaced planes, c)
bounding with B’

was in the child node, using the displacement value. If all vertices lie inside or
on the plane, i.e., signed distance is less or equal to zero, the plane belongs to
the bounding as it is. This is the case of plane A in figure 11.b, which is the
only plane that bounds all the vertices. The resulting bounding volume is the
cyan one.

As we search for a closer bounding, in figure 11.c is shown that we can insert
into the set of bounding planes the plane B but displaced until all vertices
lie inside. Note as vertex V1 initially lies outside B (11.b), but displacing the
plane to B’, it is now in the inner halfspace. The distance d is exactly the
distance from V1 to B.

Each relevant plane -displaced or not- is selected as part of the bounding.
The key point is to define what is a relevant plane. We could consider that all
bounding planes are relevant enough, but this would lead to have no advantage
of our method when using it with completely convex models. So, we have
decided to use a classification method to determine which planes best describe
the original surface. This is done by using a k-medoids algorithm [15] over the
plane normals. We simplify the problem running the algorithm over a 2D
space, representing the planes just by their normals in polar coordinates. By
using this method, planes with similar orientation are discarded, selecting just
the most relevant one, and its guaranteed that at most k planes are selected
and that they are homogeneously distributed in the 2D normal space.

In table 1 are shown building times for several models. Fertility model is built
in more time that Angelo, although it has 80K polygons less. It is due its very
convex and smooth surface, which makes a lot of planes to be selected and
hence propagated to the upper levels.
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Model Polygons Secs.

Bunny 69.451 23,16

Dragon 202.520 55,72

Teeth 233.204 86,75

Igea 268.686 127,88

Fertility 483.226 171,51

Angelo 562.879 131,12

Phlegmatic Dragon 715.933 197,24

Table 1
BP-Octree construction time for several models.

Level Bunny Dragon Fertility Phlegmatic

0 391 529 1777 743

1 1225 1658 3267 2166

2 3087 4230 7418 6031

3 7120 10822 18691 17663

4 16019 27637 42056 43295

5 33502 61272 91574 102967

6 46534 116649 185686 230607

7 - 52331 296797 423267

8 - 67 3399 144246

Table 2
Number of planes at each level of the BP-Octree.

5 Progressive Transmission of Planes

The intrinsic hierarchical feature of the BP-Octree makes easy to use it to
achieve a progressive transmission of the model through Internet, by start
sending planes from root level or a lower one, depending on the available
bandwith.

In table 2 is shown the number of planes stored at each level for four rep-
resentative models: Stanford Bunny (69K polygons), Stanford Dragon (202K
polygons), Fertility (483K polygons) and Phlegmatic Dragon (715K polygons).
It can be seen in table 3 as at first level is used less than 0.50% of total planes,
and in figure 12 is shown as with around a 10% of planes we obtain very tight
approximations.
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Level Bunny Dragon Fertility Phlegmatic

Level 0 0,56% 0,26% 0,37% 0,10%

Level 1 1,16% 0,54% 0,30% 0,19%

Level 2 2,45% 1,20% 0,82% 0,52%

Level 3 5,05% 2,90% 2,17% 1,52%

Level 4 10,27% 7,11% 4,35% 3,24%

Level 5 19,11% 13,24% 8,65% 7,21%

Level 6 19,82% 21,08% 15,39% 14,57%

Level 7 - 7,77% 20,57% 22,75%

Level 8 - 0,01% 0,22% 7,27%

Table 3
Percentage of total number of planes that are used at first time at each level.

We remark that the number of planes at one level does not mean the trans-
mission of four floating point coefficients per plane, plus its offset value. Most
of them have been used at upper levels or appear more than once at that level,
so in that cases just an index value and the offset are sent.

We have dealed in this section only to bounding-planes transmission, i.e. as-
suming that the final geometry is never transmitted, but a very fine approx-

Fig. 12. Several models at level 4, using less than 10% of planes.
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imation of it is reached at leaf nodes by their bounding. If we wanted to
transmit the final geometry, each polygon is only transmitted the first time it
is found in a leaf node. Then, at client side, it is assigned to every leaf node
where it will be used again, as described in subsection 2.2. This means that
we do not transmit any redundant data over the net, and that our structure
overhead is enough to get at early stages a good approximation of the model.

In figure 16 we show the appearance of two models at each level of the BP-
Octree, and the accumulated volume of data neccesary to reach each level is
displayed in figure 14. It can be appreciated as transferring up the sixth level
of the multiresolution hierarchy is equivalent to send the original full detailed
model, and looking at figure 16 is shown that at first levels we obtain an
acceptable image quality.

Fig. 13. Phlematic dragon at different levels of the BP-Octree.

Fig. 14. Accumulated byte count for the progressive transmission of Fertility and
Phlegmatic Dragon. It is displayed also the size of the full geometry model.
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6 Adaptive Visualization

Underlying BP-Octrees data structure allows to adaptively render the models.
The criteria to decide if descend or not in a given node are not fixed, being
possible to use the observer distance to the object of any other criterion such
as the screen size of the node.

figures in 15 have been taken using the following criterion: each node is dis-
played at most as 40 pixels width. At foreground, we can recognize the original
geometry at maximum level of detail, while in background are shown low res-
olution nodes.

7 Conclusions and Future Works

We have developed a novel data structure that handles large polygonal mod-
els, regarless of whether they have holes or not, of whether their faces are
triangles or polygons. BP-Octree construction is achieved in a reasonable tim-
ing, taking into account that it is done just once per model, and planes are
arranged through levels in such way that transmission is done progressively
and depending on the observer.

It is still needed to improve the visualization of the hierarchical model, ei-
ther using the original normals of the model or using image based rendering
techniques, as impostors [16].

Among other applications of this data structure, we are working on the col-
lision detection applyied to haptic devices and speeding up raytracing algo-
rithms.

Fig. 15. Adaptive visualization of Fertility and Teeth.
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Fig. 16. Progressive transmission of Fertility and Phlegmatic Dragon models.
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