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Chapter 1

A formalization of volumetric
models

1.1 Chapter abstract

A volume can be represented by a function α : V ⊂ R
3 → Γ where

Γ is a property domain. In this work we present a formalization of such
functions. We formalize the property domain Γ classifing into discrete
and continuous domains. We then formalize the volumetric model mak-
ing again a classification in discrete and continuous models. Several
results are shown, for example, a representation schema of discrete vol-
umes on the basis of the CSG schema, or operations to transform contin-
uous models in discrete ones.

1.2 Introduction

Volumetric data are usually represented by a set of property values γi measured in a
set of points (xi,yi,zi) : i = 1,2, · · · ,N. These values are samples from an unknown
function f (x,y,z).

In order to operate with the representation of the volume[Brodlie, 01], a func-
tion is defined to estimate the property values at the points between the known sam-
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2 Chapter 1. A formalization of volumetric models

ples. We call α to this function. In this chapter we develop a formalization of this
function α on the basis of a previous formalization of the domain of property Γ.

There are related works like those of Mallgren[Mallgren, 82],
Fiume[Fiume, 89] and Torres[Torres, 93] where several formalizations of graphic
objets are developed. However, the Mallgren’s proposal is 2D oriented and the
concepts he uses are not easily extended to 3D.

Fiume formalizes the visualization process defining a static object as
(Z0, I0) where Z0 ⊆ R

3 and I0 : Z0 → C being C a space of color. His proposal has
a handicap, the operators he defines are not boolean operators. His proposal can be
used as an abstraction of rendering but not of modeling.

Torres develops a generalization of the concept of object that is proposed by
Fiume. He defines a graphic object on the basis of the concepts of presence and
aspect.

Presence describes the ocupation of space of a graphic object. It is not only
a value of 0 or 1, but a countable value that allow to build objets by superposition
(value > 1) or substraction (negative value) of objets.

The aspect of an object defines its appearance and visual properties. It can
represent information such as color, opacity, etc.

Our proposal is centered on the formalization of volumetric objects. We con-
sider that the presence just has two allowed values, 0 and 1, and the aspect is split in
two domains: the domain of property values that are represented in the volume and
the domain of visual attributes that allow us to render an interpretation of the volume.
Property domain values can be discrete or coninuous. The study of the volumetric
models has also been developed depending on the kind of property domain on which
the volume is defined.

Next section presents our formalization of property domains. It is presented
by means of a classification of property domains in continuous and discrete. Next
section presents the formalization of volumetric models. Operators and a classifi-
cation of volumetric models in discrete and continuous are also shown. Respect to
the discrete volumetric models, a boolean algebra is defined and a representation
schema, called constructive discrete-volume geometry, is presented. Respect to the
continuous volumetric models, several algebras are shown. A way to define contin-
uous volumetric models from a finite set of samples and an operator to transform
continuous volumetric models into discrete ones are also presented.
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1.3 Mathematical model of property domain

A property domain is a set that contains all the values that can be represented in a
volume. However, a definition like the previous one is poor because if you want to
operate with volumes you need to operate with their property values, so it is nec-
essary to define several operations on the property domain that allow us to operate
with volumes. Moreover, you can need to represent properties whose values have a
discrete variation, like the material, or properties whose values show a continuous
variation, like the temperature.

So we have studied the property domains making a classification of them in
continuous domains and discrete ones.

1.3.1 Continuous property domain

A continuous property domain can have infinite property values between every two
property values.

Definition 1 (Continuous property domain) We say that Γ is a continuous property
domain iff it is homeomorfic to R

nfor some n > 0 and it has defined the following
operations:

• +: internal sum, such that (Γ,+) is an additive group.

• ∗: external product on a body K, being (Γ,+,∗) a vectorial K-space.

• ×: internal product that satisfies the following properties: associative, com-
mutative, and existence of identity element.

When in a volume you want to represent more than one property, the first step
will be to compose the corresponding property domains to obtain just one property
domain that, although compound, represents all the properties to be studied in the
volume.

The composition operator is called ] and it is defined using the cartesian
product of the domains to be composed.
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Definition 2 (Compound continuous property domain) Let Γ1 and Γ2 be continu-
ous property domains; let γ11,γ12 ∈ Γ1 and γ21,γ22 ∈ Γ2 be property values; and let
K be a body with k ∈ K.
The compound continuous property domain Γ = Γ1]Γ2 is defined as follows:

The set of values is defined as Γ = Γ1×Γ2

The operators are defined as:
+ : Γ×Γ→ Γ

(γ11 ,γ12)+(γ21 ,γ22) = (γ11 + γ21 ,γ12 + γ22)

× : Γ×Γ→ Γ
(γ11 ,γ12)× (γ21 ,γ22) = (γ11× γ21 ,γ12× γ22)

∗ : K×Γ→ Γ
k ∗ (γ11 ,γ12) = (k ∗ γ11 ,k ∗ γ12)

Theorem 1 For any two conitnuous property domains, Γ1 and Γ2, the composition
Γ1]Γ2 = Γ with the previously defined operations is a continuous property domain.
Proof:
If Γ1 and Γ2 are continuous property domains, then for some m and n, Γ1 is home-
omorfic to R

m and Γ2 is homeomorfic to R
n. Then, some continuous functions

f1 : Γ1→ R
m and f2 : Γ2→ R

n exist.
If f : Γ1×Γ2→R

m+n is defined as f (x,y) = ( f1(x), f2(y)), then f is continuous and
Γ = Γ1×Γ2 is homeomorfic to R

m+n.
It is easy to see that the operators +,×,∗ satisfy the conditions required in the defi-
nition 1.

1.3.2 Discrete property domain

A discrete property domain has a finite cardinality and is a boolean algebra. Discrete
domains are simplified representation of continuous domains.

Definition 3 (Discrete property domain) Let Γ a continuous property domain. We
say that Γ ⊂ Γ is a discrete property domain extracted from Γ iff Γ has finite cardi-
nality and it is a boolean algebra.
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The neutral element is called as 0 and the universal one as ω.

Example 1 From a property domain, color, we can extract the discrete property do-
main {black = 0, red,green,blue,cyan,magenta,yellow,white = ω} where the op-
erator ∪ represents the additive mixture of colors and the operator ∩ represents the
substractive mixture of colors.
The neutral element is the black color and the universal element is the white color.
The operators are defined as it is shown in the following tables.
K = black, R = red, G = green, B = blue,
C = cyan, M = magenta, Y = yellow, W = white

∪ K R G B C M Y W
K K R G B C M Y W
R R R Y M W M Y W
G G Y G C C W Y W
B B M C B C M W W
C C W C C C W W W
M M M W M W M W W
Y Y Y Y W W W Y W
W W W W W W W W W

∩ K R G B C M Y W
K K K K K K K K K
R K R K K K R R R
G K K G K G K G G
B K K K B B B K B
C K K G B C B G C
M K R K B B M R M
Y K R G K G R Y Y
W K R G B C M Y W

A discrete property domain can be characterized by a subset of values called
boolean base of properties.

Definition 4 (Boolean base of properties) Let Γ be a discrete property domain. The
set of property values Γb = {γ0,γ1, . . . ,γn} ⊆ Γ will be a boolean base of Γ iff:
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1. ∀γk ∈ Γ ∃γi, . . . ,γ j ∈ Γb such that γk =
S j

l=i γl

2.
S

γi∈Γb
γi = ω

3. ∀γi,γ j ∈ Γb : γi 6= γ j⇒ γi∩ γ j = 0

For all discrete property domain with two or more elements, a boolean base
exists and it is unique.

Theorem 2 For all discrete property domain Γ with two or more values of property,
a boolean base of properties exists.
Proof:
On the basis of [Permingeat, 88]:

1. A relationship a ≤ b sii a∩ b = a can be defined such that (Γ,≤,∼,ω,0) is a
boolean reticulum.

2. An atom can be defined as an element a 6= 0 such that ∀x ∈ Γ, x∩ a = a or
x∩a = 0.

3. At least an atom exists.

4. If a1 and a2 are atoms, then a1∩a2 6= 0⇒ a1 = a2.

5. If {ai, . . . ,a j} is the set of atoms such that ai ≤ x ∈ Γ−{0}, then x = ai∪ . . .∪
a j.

So, the set of atoms of Γ is a boolean base of Γ.

Theorem 3 For all discrete property domain Γ with two or more values of property,
its boolean base of properties is unique.
Proof:
Let supose that two boolean bases Γb1 and Γb2 exist. Their definitions are
Γb1 = {γ11 , . . . ,γ1n}
Γb2 = {γ21 , . . . ,γ2m}
Every γ1i can be defined by an union of elements of Γb2, but simultaneously, every γ2k

can be defined by an union of elements of Γb1. Then, every γ1i could be defined by an
union of elements of Γb1, but this is not possible because Γb1 is a boolean base. So,
the two bases are the same.
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Once we have proven that every discrete property domain (with more than one
element) has just one boolean base, we can use a set of property values as generator
set of a discrete property domain.

Theorem 4 Let Γ be a continuous property domain, and let Γb ⊂ Γ be a finite set of
values that has defined the following operations:
∪ : Γb×Γb→ Γ
∩ : Γb×Γb→ Γ
∼: Γb→ Γ
If for all x,y,z ∈ Γb, the following are hold:
• x 6= y⇒ x∩ y = 0
• x∪ (y∪ z) = (x∪ y)∪ z
• x∩ (y∩ z) = (x∩ y)∩ z
• x∪ y = y∪ x
• x∩ y = y∩ x
• x∪ x = x
• x∩ x = x
• x∪ (x∩ y) = x
• x∩ (x∪ y) = x
• x∪ ∼ x = ω
• x∩ ∼ x = 0
• x∪ (y∩ z) = (x∪ y)∩ (x∪ z)
• x∩ (y∪ z) = (x∩ y)∪ (x∩ z)
(where ω =

S

x∈Γb
x).

Then, the set Γ = {γ ∈ Γ : γ =
S

γi∈P γi ∀P ∈℘(Γb)} is a discrete property domain
generated by Γb. This is represented as Γ = G(Γb).
Proof:
Trivial.

We have also defined a composition operator for discrete property domain.

Theorem 5 Let Γ1 and Γ2 be two discrete property domains. A new discrete property
domain Γ can be defined as composition of them.
Proof:
A compound boolean base can be built, and then, a discrete property domain can be
generated.
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Case 1: Γ1 and Γ2 are subset of the same continuous property domain Γ
Let Γb1 and Γb2 be the boolean bases of Γ1 and Γ2. The boolean base of Γ is
built as:

1. Γ′
b = Γb1∪Γb2

2. Every couple of values γi,γ j ∈ Γ′
b such that γi∩ γ j = γk 6= 0 is replaced by

γi− γk, γ j− γk, and γk producing a new set Γb. The intersection among
every two different values of Γb is 0 and so, Γb is a boolean base.

Case 2: Γ1 and Γ2 are subset of different continuous property domains, Γ1 and Γ2
respectively.
The boolean base of Γ is built by the following process:

1. The continuous domain Γ is built by composition of Γ1 and Γ2.

2. The boolean base Γb of Γ is built as {(x,0) : x ∈ Γb1} ∪{(0,y) : y ∈
Γb2}

3. The operations ∪, ∩ and ∼ are defined as:
∪ : Γb×Γb→ Γ

(γ11 ,γ12)∪ (γ21 ,γ22) = (γ11 ∪ γ21 ,γ12 ∪ γ22)

∩ : Γb×Γb→ Γ
(γ11 ,γ12)∩ (γ21 ,γ22) = (γ11 ∩ γ21 ,γ12 ∩ γ22)

∼: Γb→ Γ
∼ (γ11 ,γ12) = (∼ γ11 ,∼ γ12)

So Γb is a boolean base.

Using the set Γb, the compound discrete domain Γ = Γ1]Γ2 is built as Γ = G(Γb).

1.3.3 Some operators more

Finally, we present some operators on property domains (continuous or discrete) ori-
ented to:

• Project a continuous domain in a discrete one.

• Define property domains depending on other domains.

• Interpret the property values by means of visual attributes.
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The projection operation from a continuous property domain Γ in a discrete
one Γ needs that Γ ⊂ Γ. Then, the operation is defined by an aplication P : Γ→
Γ. This operation allows us to represent a continuous domain by a set with finite
cardinality and with boolean operations, however some information will be lost due
to the approximation.

The dependence among property domains is implemeted defining functions
β from the independent property domain to the dependent one. The dependent do-
mains do not need to be explicitly represented, they are implicitly represented by the
dependence functions.

Finally, in order to visualize a volumetric model that represents several prop-
erties, it is necessary to do a mapping from the compound domain of property Γ to
a domain of visual attributes Λ, like the color or the opacity. This mapping is rep-
resented using a function ν : Γ −→ Λ, that is called interpretation function. This
function help us to understand the meaning of the properties that are being repre-
sented in a volumetric model. For instance, the clasification funtions used in volume
rendering [Levoy, 88, Westover, 90] use this kind of interpretation functions.

1.4 Mathematical model of volume

In this section we are going to describe the formalization of a volumetric model on
the basis of the property domains previously presented.

We will define an equivalence relationship among volumetric models and
generic operations among them. Next, we will introduce a classification of volu-
metric models in discrete models and continuous ones.

Definition 5 (Volumetric model) Let Γ be a property domain that represents the
properties that will be modeled of a volume. We define a volumetric model Oα as:

α : V ⊂ R
n −→ Γ

where V is closed, bounded and regular.

Example 2 A solid[Mantyla, 88] is a particular case of volumetric model. Let Oα
be a volumetric model with:
• n = 3



10 Chapter 1. A formalization of volumetric models

• Γ = {empty, f ull}
• V rigid set
• α(p) = f ull ∀p ∈V

Definition 6 (Relationship operator ◦) Let Oα1 and Oα2 be two volumetric models,
with α1 : V1 ⊂ R

n→ Γ and α2 : V2 ⊂ R
n→ Γ

Let V ′
1 = {p ∈V1 : α1(p) 6= 0} and V ′

2 = {p ∈V2 : α2(p) 6= 0}

Oα1 is related with Oα2 (Oα1 ◦ Oα2) iff V ′
1 = V ′

2 and
α1(p) = α2(p) ∀p ∈V ′

1 = V ′
2.

Theorem 6 The relationship operator ◦ is an equivalence relationship.
Proof:
Trivial because the operator ◦ is defined on the basis of the operator =.

The set of equivalence classes that can be defined from R
n to Γ is called On

Γ.
When we refer to a volumetric model Oα, we will be referring to the equivalence
class of Oα.

The operators among volumetric models will be defined by operations on Γ
and boolean operations on R

n.

Definition 7 (Internal unary operation) Let Oα1 be a volumetric model defined as
α1 : V1 ⊂ R

n→ Γ1 and let op1i be an internal unary operation defined on Γ1.
We define Oα = op1i(Oα1) as:

α : V1 ⊂ R
n→ Γ1

α(p ∈V1) = op1i(α1(p))

Definition 8 (Binary operation on an external body) Let Oα1 be a volumetric
model defined as α1 : V1 ⊂ R

n → Γ1, let K be a body and let op2e be a binary
operation defined on Γ1 and K.
We define Oα = K op2e Oα1 as:

α : V1 ⊂ R
n→ Γ1

α(p ∈V1) = K op2e α1(p)

Definition 9 (Internal binary operation) Let Oα1 and Oα2 be two volumetric mod-
els defined as α1 : V1 ⊂ R

n → Γ1 and α2 : V2 ⊂ R
n → Γ2, let op2i be an internal
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binary operation defined on Γ = Γ1]Γ2, and let opb be a regularized boolean oper-
ation on R

n.
We define Oα = Oα1 op2i Oα2 as:

α : V ∈ Rn→ Γ donde

V = V1 opb V2

Γ = Γ1]Γ2

α1 and α2 are extended or restricted in order to have α′
1 and α′

2 defined
from V to Γ

α(p ∈V ) = α′
1(p) op2i α′

2(p)

Example 3 Let us define the operation +∪, that is to say, two volumetric models will
be operated using the boolean ∪ in R

n and the internal + in Γ.

Let α1 : V1 ⊂ R
n→ Γ1 and α2 : V2 ⊂ R

n→ Γ2 be the two volumetric models.

Γ is defined as Γ1]Γ2.

V is defined as V1∪
∗V2.

αi is redefined as α′
i(p ∈V ) =

{

αi(p) if p ∈Vi

0 if p /∈Vi

Then, the result α is defined as:

α : V → Γ

α(p ∈V ) = α′
1(p)+α′

2(p)

To continue formalizing the volumetric models they have been classified in
discrete and continuous on the basis of the property domain where they are defined.

1.4.1 Discrete volumetric model

Discrete volumetric models will be characterized for being defined on a discrete prop-
erty domain and for being composed of constant volumetric models. A constant volu-
metric model will be a model that presents the same property value in all the volume.

In this section we will use boolean operations among discrete volumetric
models. In order to define these operations, it is necessary to be able to extend the α
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functions to construct the new composed volume V , ant to operate the two functions
α1 and α2.

The extension of αi is done as:

α′
i(p) =

{

αi(p) if p ∈Vi

0 if p /∈Vi

The operation ∪ is defined as:

V = V1∪V2

α(p) = α′
1(p)∪α′

2(p)

The operation ∩ is defined as:

V = V1∩V2

α(p) = α′
1(p)∩α′

2(p)

The operation − is defined as:

V = V1

α(p) =

{

α′
1(p) si p /∈ i(V2)

α′
1(p)−α′

2(p) si p ∈ i(V2)

where i(V ) computes the interior of V .

Before defining the discrete volumetric models we are going to define the
constant volumetric models.

Definition 10 (γ-constant volumetric model) Let Γ be a discrete property domain,
and let γ ∈ Γ be a property value.
We define a γ-constant volumetric model as:

α : V ⊂ R
n→ Γ where ∀p ∈V ⇒ α(p) = γ

The function α will be called as αγ, and a γ-constant volumetric model will
be called as Oγ. When the property belongs to a boolean base Γb the model will be
called Γb-constant volumetric model.

It can be easily proved that the previously defined boolean operations, when
they are applied among constant volumetric models, satify the asociative, conmu-
tative, idempowerful, absorbent, existence of complement element and distributive
properties.
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On the basis of this constant volumetric models, the discrete volumetric mod-
els are defined.

Definition 11 (Discrete volumetric model) Let Γ be a discrete property domain and
let Γb its boolean base of properties.
A volumetric model Oα will be a discrete volumetric model iff there are constant
volumetric models Oγi , · · · ,Oγ j such that:

1. {γi, . . . ,γ j} ⊆ Γb.

2. Oα =
S j

l=i Oγl

The set of all discrete volumetric models that can be defined from R
n to Γ is called

On
Γd

.

This set of discrete volumetric models together with the boolean operators
previously defined is a boolean algebra.

1.4.1.1 Boolean algebra of discrete volumetric models

The following lemmas prove that the boolean operations among discrete volumetric
models produce as result a discrete volumetric model.

Lemma 1 The union of discrete volumetric models produces as result a discrete vol-
umetric model.
Proof:
Let Oα1 and Oα2 be two discrete volumetric models, the union of both is

Oα = Oα1 ∪Oα2

As Oα1 is a discrete volumetric model, there are

Oγ1i
, . . . ,Oγ1 j

constant volumetric models such that

{γ1i , . . . ,γ1 j} ⊆ Γb
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where Γb is a boolean base of Γ and

Oα1 = Oγ1i
∪ . . .∪Oγ1 j

With Oα2 defined in a similar way. Then, we can write

Oα = Oγ1i
∪ . . .∪Oγ1 j

∪Oγ2i
∪ . . .∪Oγ2 j

So, the result is composed for a union of Γb-constant volumetric models.

Lemma 2 The intersection of discrete volumetric models produces as result a dis-
crete volumetric model.
Proof:
Let Oα1 and Oα2 be two discrete volumetric models, the intersection of both is

Oα = Oα1 ∩Oα2

If Oα1 is a discrete volumetric model, there are

Oγ1i
, . . . ,Oγ1 j

constant volumetric models such that

{γ1i , . . . ,γ1 j} ⊆ Γb

where Γb is a boolean base of Γ and

Oα1 = Oγ1i
∪ . . .∪Oγ1 j

With Oα2 defined in a similar way. Then, we can write

Oα = (Oγ1i
∪ . . .∪Oγ1 j

)∩ (Oγ2i
∪ . . .∪Oγ2 j

)

Using the distributive property

Oα =
[

(Oγ1k
∩Oγ2l

)

∀Oγ1k
belonging to the components of Oα1 and ∀Oγ2l

belonging to the components of
Oα2 .
As the intersection among Γb-constant volumetric models is a Γb-constant volumetric
model or an empty model, we can say that the result is composed for a union of Γb-
constant volumetric models.
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Before proving the difference among discrete volumetric models, we are go-
ing to prove that the difference among constant volumetric models produces a dis-
crete volumetric model, and the difference among a discrete volumetric model and a
constant volumetric model produces a discrete volumetric model.

Lemma 3 The difference among constant volumetric models produces a discrete vol-
umetric model.
Proof:
Let Oγ1 and Oγ2 be two constant volumetric models defined as α1 : V1→ Γ and
α2 : V2→ Γ

The difference among both as it is defined in the page 12 is Oα = Oγ1−Oγ2

where

α(p) =

{

γ1 si p /∈ i(V2)
γ1− γ2 si p ∈ i(V2)

being i(V ) the interior of V .

Oα can be written as Oα = Oαa ∪Oαb where αa : V1−V2→ Γ with
αa(p) = γ1 and αb : V1∩V2→ Γ with αa(p) = γ1− γ2 and so, it is a discrete volu-
metric model.

Lemma 4 The difference among a discrete volumetric model and a constant volu-
metric model produces a discrete volumetric model.
Proof:
Let Oα1 be a discrete volumetric model and let Oγ be a constant volumetric model,
the difference among both is

Oα = Oα1−Oγ

If Oα1 is a discrete volumetric model, there are

Oγ1i
, . . . ,Oγ1 j

constant volumetric models such that

{γ1i , . . . ,γ1 j} ⊆ Γb

being Γb a boolean base of Γ and

Oα1 = Oγ1i
∪ . . .∪Oγ1 j
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Then, Oα can be written as:

Oα = (Oγ1i
∪ . . .∪Oγ1 j

)−Oγ

Sustituting the difference by the intersection with the complementary we have

Oα = (Oγ1i
∪ . . .∪Oγ1 j

)∩ ∼ Oγ

Using the distributive property we have

Oα =
[

(Oγ1k
∩ ∼ Oγ)

Sustituting the intersection with the complementary by the difference we have

Oα =
[

(Oγ1k
−Oγ)

Oα is defined by the union of discrete volumetric models, so Oα is a discrete volumet-
ric model.

Lemma 5 The difference among discrete volumetric models is a discrete volumetric
model.
Proof:
Let Oα1 and Oα2 be two discrete volumetric models, the difference among both is

Oα = Oα1−Oα2

If Oα1 is a discrete volumetric model, there are

Oγ1i
, . . . ,Oγ1 j

constant volumetric models such that

{γ1i , . . . ,γ1 j} ⊆ Γb

being Γb a boolean base of Γ and

Oα1 = Oγ1i
∪ . . .∪Oγ1 j

With respect to Oα2 is similar. So Oα can be written as:

Oα = (Oγ1i
∪ . . .∪Oγ1 j

)− (Oγ2i
∪ . . .∪Oγ2 j

)
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Sustituting the difference by the intersection with the complementary we have

Oα = (Oγ1i
∪ . . .∪Oγ1 j

)∩ ∼ (Oγ2i
∪ . . .∪Oγ2 j

)

The complementary of an union of objets is equal to the intersection of the objets’
complementary

Oα = (Oγ1i
∪ . . .∪Oγ1 j

)∩ (∼ Oγ2i
∩ . . .∩ ∼ Oγ2 j

)

Using the asociative property we have

Oα = ((Oγ1i
∪ . . .∪Oγ1 j

)∩ ∼ Oγ2i
)∩ (∼ Oγ2k

∩ . . .∩ ∼ Oγ2 j
)

Sustituting inside the underlining parenthesis the intersection with a complementary
by the difference we have

Oα = ((Oγ1i
∪ . . .∪Oγ1 j

)−Oγ2i
)∩ (∼ Oγ2k

∩ . . .∩ ∼ Oγ2 j
)

That is to say, inside the underlining parenthesis we have the difference among a dis-
crete volumetric model and a constant volumetric model, which produces a discrete
volumetric model. Repeating the process by means of the associative property with
the other constant volumetric models belonging to the descomposition of Oα2 , the
differences are done one by one getting as result a discrete volumetric model.

On the basis of the previous lemmas, we can define a boolean algebra of
discrete volumetric models.

Theorem 7 (Boolean algebra of discrete volumetric models) The quadruple
(On

Γd
,∪,∩,∼) is a boolean algebra.

Proof:
We have proven that the operations are closed. We should prove that the operations
satisfy the properties that characterize the boolean algebras. This properties are
satisfied because the operations among discrete volumetric models are based on
operations among constant volumetric models that satisfy such properties.
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1.4.1.2 Constructive Discrete-Volume Geometry

On the basis of the boolean algebra of discrete volumetric models, we are going
to present a representation schema of discrete volumes. It is called Constructive
Discrete-Volume Geometry (CDVG). It is based on the Constructive Solid Geometry
schema [Requicha, 82], which represents a solid representing the building process of
the solid from geometric primitives using regularized boolean operations.

It is rather used to model solids [Requicha, 80] because of its expressive
power, validity, non ambiguity, use easiness by means of languages. Moreover, it
is concise and closed by the boolean operations [Mantyla, 88].

It considers that solids just have one property value, that is to say, it just
represents homogeneous solids. Using the formalization presented about discrete
volumetric models, solids with more than one property value can be represented.
Our proposal allows us to represent heterogeneous solids (discrete volumes).

By a CDVG, every primitive represents a geometry and a property value.
Primitives are constant volumetric models. Operanting with primitives by the pre-
viously defined boolean operations a representation of a discrete volume is got.

A CDVG tree is defined as:

<CDVG tree> ::=
<primitive with property value> |
<CDVG tree><boolean operation><CDVG tree> |
<transformation><CDVG tree>

Figure 1.1 represents a 2D discrete volume using a CDVG.

1.4.2 Continuous volumetric model

Continuous volumetric models will be characterized for being defined on a continu-
ous property domain.

Definition 12 (Continuous volumetric model) A volumetric model Oα with α : V ⊂
R

n→ Γ will be a continuous volumetric model iff Γ is a continuous property domain.

The set of all continuous volumetric models that can be defined from R
n to Γ

is called On
Γc

.
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Figure 1.1: CDVG of a 2D discrete volume

Defining several operations on On
Γc

, some algebras of continuous volumetric
models can be defined.

1.4.2.1 Algebras of continuous volumetric models

The algebras will be defined on the basis of the internal operators +∪ and ×∪; and
on the basis of the external operator ∗ on a body K. The operators are defined as it is
previously shown in this section. Moreover, some particular objects will be needed.

Definition 13 (Neutral element for +∪) The neutral class of equivalence for the
operation +∪ is the class that contains the object Oα with α : R

n → Γ defined as
α(p) = 0 ∀p where 0 is the neutral element for the operator + on the domain of
property. It is called as O0.

Definition 14 (Opposed element for +∪) Given a volumetric object Oα, the op-
posed element for +∪ is defined as Oα− where α−(p) = −α(p) ∀p. The element
−γ represents the opposed element of γ for the operator + on the property domain.

Theorem 8 The pair (On
Γc

,+∪) is an additive group.
Proof:
The asociative and conmutative properties are satisfied because +∪ is defined on the
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basis of the operators ∪ on R
n and + on Γ, which satisfy such properties. Let’s prove

the existence of the neutral and opposed element.

Given Oα1 a volumetric model where α1 : V1 ⊂ R
n→ Γ the operation

Oα1 +∪ O0

is equal to an Oα where

α(p) =

{

0 if p /∈V1
α1(p)+0 if p ∈V1

Then, Oα ◦Oα1 .

With respect on the opposed element, the operation

Oα1 +∪ Oα−

1

is equal to an Oα where
α(p) = α(p)−α(p) = 0

then, Oα ◦O0.

Theorem 9 Given a body K and the external operator ∗ on K, the trio (On
Γc

,+∪,∗)
is a vectorial K-space.
Proof:
Trivial, (On

Γc
,+∪) is an additive group, and the operator ∗ on OΓc and K is defined on

the basis of ∗ on Γ and K. So, the properties to be a vectorial K-space are satisfied.

Definition 15 (Identity element for ×∪) The identity equivalence class for the op-
erator ×∪ is the class that contains the object Oα such that α : R

n → Γ with
α(p) = 1 ∀p where 1 is the identity element for × on Γ. It is called as O1.

Theorem 10 The internal product ×∪ on On
Γc

satisfies the associative, conmutative
and existence of identity element properties.
Proof:
The associative and commutative properties are satisfied because ×∪ on On

Γc
is de-

fined on the basis of ∪ on R
n and × on Γ, which satisfy such properties. Let’s prove

the existence of identity element.
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Given Oα1 a volumetric model where α1 : V1 ⊂ R
n→ Γ the operation

Oα1×∪ O1

is equal to an Oα where

α(p) =

{

0×1 = 0 si p /∈V1
α1(p)×1 = α1(p) si p ∈V1

Then, Oα ◦Oα1 .

1.4.2.2 Some operations more

In this section we are going to show how to define a continuous volumetric model
from a finite set of samples, how to simplify it and how to transform continuous
volumetric models in discrete ones.

Usually, the function α is not known, having just a finite set of samples V as
volume representation, for example the data that are got from a computed tomogra-
phy. In these cases, the function

α : V ⊂ R
n→ Γ

is not a volumetric model because V is not regular. However, a volumetric model can
be built from V by the function

α : V ⊂ R
n→ Γ

where:

• V is the convex hull of V .

• α is interpolation function that allow us to estimate property values between
the known points. It must satisfy the condition α(p) = α(p) ∀p ∈ V . Usually
it is a n-linear interpolation.

Some times, in order to reduce the storage requeriments, only a subset of
samples W ⊂ V is represented. We have studied how this subset must be chosen to
minimize the error that is produced with the reduction.
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From W , a volumetric model can be defined as

α′ : W ⊂ R
n→ Γ

but the following conditions must be satisfied to reduce the error of aproximation:

• W must have the same convex hull than V , that is to say, W = V

• All the points that have a local minimun or a local maximun in V must be in
W .

This error can be computed as:

error =
1

Card(V ) ∑
p∈V
|α′(p)−α(p)|

On the basis of this idea of simplification of volumetric models a represen-
tation schema was presented in [Velasco, 01a], where it is shown as example the
representation of a human head with a space reduction of 20% and an error of 0.14
units. In this particular example, the error is measured visualizing the volume by
isosurface extraction and estimating the average deviation between isosurfaces. One
unit is the distance between two consecutive samples.

Finally, we are going to present an operation to transform a continuous vol-
umetric model in a discrete one, using the projection functions that can be defined
from continuous property domains to discrete ones.

Let Γc be a continuous property domain, let Γd ⊂ Γc be a discrete property
domain, let Γdb be its boolean base of properties and let P : Γc→ Γd be a projection
from Γc to Γd .

Let αc : V ⊂ R
n→ Γc be a continuous volumetric model. A function

αd : V ⊂ R
n→ Γd

could be defined as
αd(p) = P(αc(p)) ∀p ∈V

but we could not assure that αd is a discrete volumetric model because we do not
know whether it can be built by an union of constant volumetric models or not. But
we can use it to define a discrete volumetric model from it:
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1. Several sets Vi = {p ∈V : αd(p)∩ γi = γi} ∀γi ∈ Γdb are defined.

2. The sets Vi of the previous step are regularized to get regular sets V ′
i .

3. Several constant volumetric models

α′
i : V ′

i ⊂ R
n→ Γd

are defined as
α′

i(p) = γi ∀p ∈V ′
i

4. Then, a discrete volumetric model can be defined as

O′
α =

[

i

Oα′

i

1.5 Chapter conclusions

In this chapter, we have presented a formalization of volumetric models. This for-
malization has been developed using the function α : V ⊂ R

n→ Γ as representation
of a volume, where Γ is the domain of property values that are represented by the
volume.

The formalization has been developed in two steps, first we have formalized
the domain of properties defining several operations and defining several algebras.
A classification of domains of properties has been developed: discrete domains and
continuous ones.

We have formalized the volumetric models defining several operations and
defining several algebras. A classification of volumetric models has been developed:
discrete volumetric models and continuous ones.

A boolean algebra of discrete volumetric models has been defined, and a rep-
resentation schema that is based on it has been presented: Constructive Discrete-
Volume Geometry (CDVG).

Respect to the continuous volumetric models, we have formalized how to
build a continuous volumetric model from a finite set of samples, and how to trans-
form a continuous volumetric model in a discrete one.

As future work, we plan to formalize mixed domains of properties, continuous
and discrete, as well as to formalize mixed volumetric models.





Chapter 2

Cell Octrees

2.1 Chapter abstract

Today it is usual to have volumes represented by several millions of
data due to the improvements of scaners. So it is neccesary to have a rep-
resentation scheme which allows us to manipulate them quickly. In this
chapter we propose a multiresolution representation scheme, called cell
octree, which represents the volume using the highest resolution where
it is necessary and a low resolution in the areas of the volume where
the represented information verifies some user-defined criterion. So the
volume is only represented at the highest resolution where it is really
usefull.

The method is oriented to render the model using marching cubes.
The representation, which is independent on the threshold, is built in
such a way that it guarantees that the isosurfaces are crack-free.

2.2 Introduction

A volume, in a general way, can be mathematically represented as a function (with
several restrictions) from the Euclidean space R

3 towards the property set that are
being represented [Velasco, 03].

When the volume is obtained from a 3D scanner, for example a TAC (tomog-
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raphy axial computerised) from a patient, just a set of samples is got as representation
of it.

In order to have a good representation, a large data set is necessary, so it is
necessary to have a data structure which allows us to handle the information quickly.

Wilhelms et al. propose a data structure called bono (Branch On Need Oc-
tree) that indexes the data set, being this data set arranged as an isotropic, regular,
rectilinear and structured grid [Wilhelms, 92]. A bono represents the data set as a
cubic cells grid together with a tree that indexes the grid. When the volume is to be
visualized, a isosurface is extracted from the volume acording to a threshold property
value. Grey nodes store the maximum and minimum property values of its cells.

The bono structure allows to access quickly to the cells that are crossed by
the isosurface for a given threshold. The isosurface is built by marching cubes
[Lorensen, 87].

However, data sets are larger and larger, so it is necessary to have a data
structure that needs less storage space. In this chapter we propose a data structure
called Cell Octree which reduces the storage space taking into account the regularity
of the information.

Voxel vs. Cell. We call voxel to a cell which represents just one
constant property value for all the points inside it. The clasical octrees
[Meagher, 80] are based on voxels whereas the structure we are propos-
ing is based on cells. A cell stores eight property values at its eight ver-
tices, so it represents a continuous property values field inside it.

Next section shows the cell octree scheme defining several user-dependent
criteria to build it. Section four shows the results we have got on real and synthetic
volumes and the scheme is compared with other approaches. The final section shows
the conclusions of this chapter and outlines some works for the future.

2.3 Cell octree

The idea is to study the cells and find out which cells can be grouped whitout chang-
ing the generate isosurface. Where they verify some conditions, eight cells are
grouped into just one, as it is shown in the figure 2.1.
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Figure 2.1: Unique allowed way of grouping cells

We use a bono as start point on which, grouping is implemented prunning the
tree.

Before presenting the cell octree, let us see the main characteristics of the
bono structure (the figure 2.2 shows a 2D bono):

• The internal nodes of the tree can have 8 sons (4, 2 or 1 for the singular cases).

• The tree indexes the grid independently on its size.

• The number of internal nodes is minimal.

• Its leaf nodes represent 8 cells (4, 2, or 1 for the singular cases).

• It has all its leaf nodes in the same level.

The singular cases appear when the size of at least one dimension of the
bounding box is not a power of two or when the size of the three dimensions of
the bounding box is not the same. These sigular nodes represent up to three faces that
are sharing a corner of the bounding box. In the figure 2.2, the upper and right edges
produce singular nodes.

A cell octree conserves all the characteristics of a bono less the last one, a cell
octree can have leaf nodes at every level. As the size of the cell represented by a leaf
node depends on its level, a cell octree can represent cells of different size.

Another difference is that a cell octree can have leaf nodes that represent just
one cell (not only for singular cases). We will call it an OneCellLeafNode when a
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Grid

Leaf node
Internal node
Cell
Split for the next level

Level 1

Level 2

Root node
Level 3

Tree

Figure 2.2: Grid and tree for a 2D bono

non-singular leaf node represents just one cell, and about MoreCellsLeafNode for a
leaf node that represents more than one cell.

The process to build a cell octree consists on traversing a bono in a bottom-up
way and every time that the eight cells represented by a leaf node (MoreCellsLeafN-
ode) verify the prunne criterion the leaf node is transformed into an OneCellLeafN-
ode, and every time that eight brother OneCellLeafNode exist, theirs father internal
node is transformed into a MoreCellsLeafNode. See the figure 2.3.

Figure 2.3: Prunning process for a 2D cell octree

The figure 2.3 shows a part of a 2D grid (16 cells) which is represented by
an internal node and four MoreCellsLeafNodes. In the first step, the cells represented
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by one of these leaf nodes verify the prune criterion and it is transformed into One-
CellLeafNode, the following three steps show the transformation of the other three
MoreCellsLeafNodes into three OneCellLeafNode. Then, there is an internal node
that is father of four OneCellLeafNode, so these leaf nodes are prunned and the inter-
nal node is transformed into a MoreCellsLeafNode. Again the four cells represented
by this leaf node are tested and if they verify the prunne criterion (as in the figure) the
MoreCellsLeafNode is transformed into an OneCellLeafNode. After these six steps
this area of the 2D grid is now represented by one larger cell.

The figure 2.4 shows a 2D grid (a), the 2D bono for the grid (b), a possible
2D cell octree (cell quadtree) built from the previous bono (c), and the non regular
grid that is represented by the cell quadtree.

(a) (b) (c) (d)

Figure 2.4: Cell quadtree from a 2D grid

By a cell octree, a volume can be represented using less amount of informa-
tion and by an user-defined prunning criterion. In the following sections we will
present several prunning criteria which have been defined thinking on visualizing
the volume by isosurface extraction methods. However, the prunning criteria are
threshold independent, so the cell octree does not need to be re-built every time the
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threshold changes.

In the rest of the thesis, we will refer to the grouping operation and to the
prunning operation indistinctly.

2.3.1 Definitions

Let us define some geometric elements. See the figure 2.5.

c-group: Candidate group. A group of eight cells which are tested in order to group
them into one larger cell.

c-face: Candidate face. A group of four faces on the same plane which belong to
the boundary of a c-group. If a c-group is grouped, its six c-faces will be the
six faces of the larger cell.

c-edge: Candidate edge. A group of two edges on the same line which belong to the
boundary of a c-face. If a c-group is grouped, its twelve c-edges will be the
twelve edges of the larger cell.

Together with these elements there will be six kind of vertices.

In a c-edge we will distinguish two kind of vertices: one c-edge central vertex
and two c-edge final vertices.

In a c-face we will distinguish two kind of vertices: one c-face central vertex
and four c-face corner vertices.

In a c-group we will distinguish two kind of vertices: one c-group central
vertex and eight c-group corner vertices.

Finaly, a vertex v is positive for a particular threshold value γ if F(v)≥ γ and
negative if F(v) < γ [Lorensen, 87]. F(v) is the function that returns the property
value at the vertex v.

2.3.2 Basic prunning criterion

The main idea is to group eight cells into just one when this operation does not lead
a non-desired error. That is to say, the error between the volume represented by a



2.3. Cell octree 31

Figure 2.5: C-group and other definitions

grouped cell and the volume represented by the eight cells before grouping must be
small enough as to be allowed by the user.

As the visualization method we use is by isosurface extraction, let us analize
which errors on the isosurface can be arisen when eight cells are grouped. Mainly
the errors are due to the values that are not accessed yet in a grouped cell and that
continue being accessed in the smaller joint cells (blue points in the figure 2.6).

Figure 2.6: Vertices that are an error source

Let us see the non-desired error (see figure 2.7, where red points are positive
points). Let E be a c-edge, if its c-edge central vertex value is greater than the values
at its both c-edge final vertices or if it is lesser than them, then the situation that is
shown in the figure 2.7(a) can arise. In this figure we can see for a particular threshold
value there are isosurface inside the small cells but there is not any isosurface inside
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the larger cell, so the isosurface has a hole whose border is rendered in the figure in
red. This error is due because the c-edge central vertex is positive where the c-edge
final vertices are negative.

(a) (b)

(c) (d)

after

prunning

Figure 2.7: Non-desired errors

In order to avoid holes as the one shown in the figure 2.7(a) the equation 2.1
must be true for every c-edge of the c-group. Obviously, the c-group of the large
cell of the figure 2.7(a) did not make true the equation and it should not have been
grouped.

[(F(c− edge f inal vertex1) ≤ F(c− edge central vertex))∧

(F(c− edge central vertex) ≤ F(c− edge f inal vertex2))]

∨

[(F(c− edge f inal vertex1) ≥ F(c− edge central vertex))∧

(F(c− edge central vertex) ≥ F(c− edge f inal vertex2))] (2.1)

Another non-desired error is the one shown in the figure 2.7(b).

In this case, for a particular threshold the c-face central vertex is positive
while the four c-face corner vertices are negative, so there is isosurface outside the
large cell but there is not inside it.

To avoid this kind of holes the equation 2.2 must be true for every c-face of
the c-group. Let us supose that the condition 2.1 is true for every c-edge of the c-face.
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Then, the condition is,

F(c− f ace central v.) ≤ F(max{c− f ace corner v.})

∧

F(c− f ace central v.) ≥ F(min{c− f ace corner v.}) (2.2)

Another non-desired error is the losing of parts of the isosurface. Let us su-
pose a c-group as the one shown in the figure 2.7(c). For a particular threshold there
is a part of isosurface around the c-group central vertex.

If this c-group is grouped, this part of the isosurface will be lost. So another
condition is set to avoid these situations. The c-group central vertex can not have
the minimum or the maximum property value among the 27 property values of the
27 vertices of the c-group. Let us supose that the conditions 2.1 and 2.2 are true for
every c-edge and c-face of the c-group. Then, the condition is,

F(c−group central v.) ≤ F(max{c−group corner v.})

∧

F(c−group central v.) ≥ F(min{c−group corner v.}) (2.3)

Finnaly, when a prune is done, the isosurface built inside a grouped cell for a
particular threshold can be very different of the isosurface which would be built inside
the c-group before grouping it. This is so because the isosurface inside a grouped cell
is built using 8 vertices instead of the 27 vertices which would be used in the eight
cells of the c-group. See a 2D example in the figure 2.7(d).

So there is one condition more.

Let ∆γ be the maximum deviation allowed for a vertex’ property value. It is
defined by the user.
Let F(v) be the property value known for the vertex v.
Let F ′(v) be the property value estimated for the vertex v in a grouped cell.
Then, the condition is
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∀c− edge central vertex v ∈ c−group
|F(v)−F ′(v)| ≤ ∆γ

∀c− f ace central vertex v ∈ c−group
|F(v)−F ′(v)| ≤ ∆γ

∀c−group central vertex v ∈ c−group
|F(v)−F ′(v)| ≤ ∆γ

(2.4)

So, the criterion is defined as follows:

Basic prunning criterion

A c-group will be grouped iff:

1. The condition 2.1 is true for every c-edge of the c-group.

2. The condition 2.2 is true for every c-face of the c-group.

3. The condition 2.3 is true for the c-group central vertex of the c-group.

4. Once the user has defined the allowed error ∆γ, the condition 2.4 is true for
every c-edge central vertex, every c-face central vertex and the c-group central
vertex of the c-group.

By the use of this criterion, prunnes are done avoiding some non-desired er-
rors, however grouped cells can be ambiguous. A cell is ambiguous when for a partic-
ular threshold there is one configuration of positive and negative vertices but different
topologies of isosurface are possible. To determine which concrete topology must be
built, several computations must be done [Chernyaev, 95, Lopes, 99, Cignoni, 00].

In order to decrease this kind of computations, a new condition can be added
to the basic prunning criterion with the goal of avoiding the grouped cells to be am-
biguous for all thresholds.

Next section shows a criterion which is based on this one and avoids ambigu-
ous grouped cells.

2.3.3 Monotonous prunning criterion

The ambiguous cells are those which have an ambiguous face, that is to say, a face
which have 2 positive vertices in a diagonal and 2 negative vertices in the other di-
agonal, see figure 2.8. A cell will also be ambiguous, even when its faces are not



2.3. Cell octree 35

ambiguous, if it has 2 positive vertices in a main diagonal and the other vertices are
negatives, see figure 2.9. In both figures (2.8 and 2.9) the cases (a) and (b) show
different possible triangulations.

(a) (b)

Figure 2.8: Two triangulations for a cell within an ambiguous face

In order to increase the prunne criterion to avoid ambiguous grouped cells
we will define the concept of monotonous cell, a cell will be monotonous if it is not
ambiguous for any thershold. Before defining a characterization of this concept we
must define some previous concepts.

Definition 16 (Monotonous face)
Let c be a face and F(c) its boundary.

c is monotonous iff F|F(c)(x,y,z) only has one minimum and one maximum.

Theorem 11
Let c be a face.
If c is monotonous then c is unambiguous for all threshold.
Proof:
Let us supose that there is a threshold γ so that c is ambiguous, then c has two positive
vertices in a diagonal and two negative vertices in the other diagonal, so F|F(c)(x,y,z)
would have 2 maximums and 2 minimums and c would not be monotonous.

Definition 17 (Potentialy cut vertex)
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(a) (b)

Figure 2.9: Two triangulations for a ambiguous cell without ambiguous faces

A vertex v0 of a cell c will be called potentialy cut if one of the following conditions
is true (see figure 2.10(a)):

1. F(v0) < min{F(v1),F(v2),F(v3)}

2. F(v0) > max{F(v1),F(v2),F(v3)}

where v1, v2 y v3 are vertices which share some edge with v0.

A potentialy cut vertex has an associated active interval, which is

[F(v0),min{F(v1),F(v2),F(v3)}] (2.5)

for the condition 1, or

[max{F(v1),F(v2),F(v3)},F(v0)] (2.6)

for the condition 2.

Theorem 12
A cell within a potentialy cut vertex will be crossed for every isosurface whose thresh-
old belongs to its associated active interval. The potentialy cut vertex will be on a
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v0

v1

v2

v3

v0

v1

v2

v3

(a) (b)

Figure 2.10: Potentialy cut vertex

side of the isosurface and the other vertices will be on the oposite side. See figure
2.10(b).
Proof:
Trivial. For all threshold that belongs to the associated interval, the sign of v0 will
be different to the sign of v1, v2 and v3.

Definition 18 (Non monotonous diagonal)
Let c be a cell, let d be a main diagonal of c.
d is non monotonous if its ending vertices are potentialy cut vertices and the inter-
section of their associated intervals is non empty. This intersection set is called Nd .

A cell whose faces are monotonous but within a non monotonous diagonal d
will have a configuration as the one shown in the figure 2.9, in particular for every
threshold that belongs to Nd .

Definition 19 (Monotonous diagonal)
Every main diagonal that can not be labelled as non monotonous will be defined as
monotonous diagonal.

Now, we can define the concept monotonous cell on the basis of the previous
definitions.
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Definition 20 (Monotonous cell)
A cell will be monotonous if its 6 faces are monotonous and its 4 main diagonals also
are monotonous.

Theorem 13
Let c be a cell. If c is monotonous then there is no threshold so that c is ambiguous.
Proof:
Trivial.

So, if the user wants to avoid the grouped cells to be ambiguous for all thresh-
olds, a new condition has to be added to the basic prunning criterion getting a new
criterion defined as follows:

Monotonous prunning criterion

A c-group will be grouped iff:

1. The c-group observes the basic prunning criterion conditions.

2. The cell after grouping is monotonous.

Next section shows another criterion, in this case the goal is to avoid cracks
on the isosurface when there are joined cells of different size.

2.3.4 Non cracks prunning criterion

In a cell octree is usual to have joined cells of different size (see figure 2.11(a)).

(a) (b)

Figure 2.11: Joined cells of different size and a possible crack on the isosurface inside
them
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In these cases some cracks as the one shown in the figure 2.11(b) can be arisen
in the boundary between cells of different size.

This happens because the isosurface on a side of that boundary is computed
using 9 vertices whereas on the other side is computed using only 4 vertices.

There are different methods to cover these holes. It can be done drawing a
polygon [Shu, 95], moving the vertices of the small triangles towards the larger one
[Shekhar, 96], or replacing some triangle in the large cell by a fan of triangles which
are put to fill the hole [Westermann, 99].

In these methods the process is done after a particular threshold is set and
after the triangles have been built. We propose a method which directly produces the
isosurface without cracks and without post-process.

The basic idea is to modify the property value of some vertices, so that when
the isosurface is built inside a large cell and inside the joined smaller cells, both parts
of isosurface coincide on the boundary between those cells. This modification would
be done just once, so new computations will not be needed every time the threshold
changes.

Let us see what is happen on the boundary between one large cell and four
smaller cells.

Usually, the function F(x,y,z) used to interpolate the interior of a cell is
the trilinear interpolation, then when F(x,y,z) is restricted to a face, the function
G(s, t) which interpolates the interior of a face is a bilinear interpolation which
depends on the four corners of the face. So, the boundary between one large
cell and four small cells is modelled by five bilinear interpolations. One from the
large cell (v1,v3,v7,v9) and four from the small cells: (v1,v2,v4,v5), (v2,v3,v5,v6),
(v4,v5,v7,v8), and (v5,v6,v8,v9). See figure 2.12.

v v v

vvv

v v v1

4

7 8

5

2 3

6

9

Figure 2.12: Boundary between cells of different size

The first step would be to make the four small bilinear interpolations coincide
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with the large bilinear interpolation by the modification of the property value at some
vertices, as it is shown in the following equations:

F(v2) ←
F(v1)+F(v3)

2

F(v4) ←
F(v1)+F(v7)

2

F(v6) ←
F(v3)+F(v9)

2

F(v8) ←
F(v7)+F(v9)

2

F(v5) ←
F(v1)+F(v3)+F(v7)+F(v9)

4
(2.7)

However this does not avoid the cracks because the isosurface is approxi-
mated as triangles with different resolution for the large and the small cells. The
isosurface restricted to a face is an isocurve which is approximated by a polyline as
it is shown in the figure 2.13, where it is approximated by one segment in the large
cell and until three segments in the small cells, so the crack is still arisen.

Approximation in the small cells
Approximation in the large cell

Small cells
Large cell
Isocurve

Figure 2.13: Approximation of an isocurve
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So, the property value F(v5) must be modified on the basis of the approxima-
tion of the isocurves. There are three different cases of isocurves, let us see them.

For these cases, when we refer to the bilinear surface we are refering
to the bilinear of the large cell, which determines how F(v5) must be
modified to make coincide the approximation of the isocurve on the small
faces with the approximation of the isocurve on the large face.

Case 1: Flat bilinear

In this case, the representation of the bilinear surface 1is a plane (see figure
2.14). All the isocurves are straight lines, so F(v5) can be modified as it was shown
in the equation 2.7. No cracks will be arisen on this face for all threshold.

Figure 2.14: Plot of a bilinear for the case 1

Case 2: Isocurve between two contiguous edges

Let us supose that for all threshold the isocurve is plot between two contin-
guous edges, so the bilinear (figure 2.15(a)) would be approximated by two triangles
(figure 2.15(b)).

(a) (b)

Figure 2.15: Plot of a bilinear for the case 2 and its approximation

In this case F(v5) must be modified with the average value of the ending
values of the diagonal where the two triangles are joined.
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But the figure shows the ideal case where the two ending vertices of such a
diagonal have the same value. When these vertices have different values (a and b),
for all threshold in the opened interval ]a,b[ its isocurve will not be between two
contiguous edges.

In general, if a and b are the values of the ending vertices of a diagonal of the
face and c and d are the values of the ending vertices of the other diagonal of the face,
∀γ ∈]a,b[∩]c,d[ the isocurve will not be in this case. The isocurve will be between
two opposed edges.

Case 3: Isocurve between two opposed edges

In this case (see figure 2.16(a)), to make both isocurves coincide, F(V5) must
be modified according to the equation 2.8

F(v5)←
γ0−F(v4)

xa
+F(v4) (2.8)

where

xa =

γ0−F(v1)
F(v2)−F(v1)

+ γ0−F(v7)
F(v8)−F(v7)

2

So the new value for F(V5) depends on the threshold γ0. Moreover, when the
isocurve crosses three small cells (see figure 2.16(b)) F(V5) must be modified using
two different values simultaneously, one of them must be used to compute the correct
position of Va and the other one must be used to compute the correct position of Vb.

(a) v2

v4 v5 v6

v8

1v

7v 9v

3v

Va

(b) v2

v4 v5 v6

v8

1v

7v 9v

3v

Va

Vb

Figure 2.16: Approximation of an isocurve between two opposed edges. (a) crossing
2 small cells. (b) crossing 3 small cells

This case is not independent on the threshold and a preprocess would be nec-
essary every time the threshold changes. As our goal is to allow changes on the
threshold without preprocessing, we are going to define a prunning criterion which
avoids this case 3.
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For that, the user must define a set of important threshold values and then the
cell octree is built acording to these values and the user can visualize the volume for
these values whitout any preprocess due to a threshold change and, more important,
without cracks on the isosurface.

a

d

c

b

Figure 2.17: Face corner values

Definition 21 (Valid Face)
Let CΓ be the set of threshold values which are important for the user.

Let F be a face, let a,b,c,d be the property values on its four corners as it is
shown in the figure 2.17.

F will be valid for CΓ if its bilinear is flat (case 1 previously shown) or belongs
to the case 2 previously shown for all threshold in CΓ.

In particular, the following condition must hold:

(c−a) = (b−d) or (2.9)

CΓ∩ ]a,b[ = ∅ or (2.10)

CΓ∩ ]c,d[ = ∅ (2.11)

Non cracks prunning criterion

A c-group will be grouped if:

1. The c-group observes the monotonous prunning criterion conditions.

2. The cell after grouping has all its faces valid for CΓ.

Once the cell octree is built it is traversed by first-breadth mode and every
time there is a boundary between cells of different size (see figure 2.12) the values
F(v2),F(v4),F(v6),F(v8) are modified as it is shown in the equation 2.7 and F(v5)
is modified as:
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• F(v5)←
F(v1)+F(v3)+F(v7)+F(v9

4 if the equation 2.9 is true.

• F(v5)←
F(v1)+F(v9)

2 if the equation 2.10 is true.

• F(v5)←
F(v3)+F(v7)

2 if the equation 2.11 is true.

So, the isosurfaces for every value in CΓ will be built without cracks.

2.4 Results

The proposals which have been shown in this chapter have been implemented and
tested using real and simulated volumes. As real volumes we have used volumetric
information from a tomography axial computerized (TAC), in particular, data from
the Visible Human Project without filtering and normalized between 0 and 255. The
threshold visualized is 60 (see figure 2.18(left)). The resolutions are: 100×80×80
for the neck, 150×120×120 for the knee and 200×240×240 for the head.

We have also tested the proposed method using models whitin a well know
definition function. In particular we have used three models whose definition is:

α(x,y,z) : V ⊂ R
3→ [0,255]

α(x,y,z) =

{

255 · (1− ri) if ri ≤ 1
0 default

(2.12)

where V is an aligned cube with edge equal to 2 units centered at the origin.

ri is defined depending on the particular model as follows:

• Model 1
r1 =

√

x2 + y2 + z2 (2.13)

• Model 2
r2 =

√

x2 + y2 + z2+

+0.05 · (sin(50 · arctan
z
x
)+ cos(40 · arctan

y
x
)) (2.14)
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Figure 2.18: Real volume and mathematical model images

• Model 3
r3 =

√

x2 +2 · y · z (2.15)

A cell octree has been built from these models within a resolution of 100×
100×100. Using 60 as threshold the images in the figure 2.18(right) are got.

All the models have been represented by a bono and by a cell octree using the
non cracks prunning criterion. The tree size has been measured and the time spent in
building it. The time spent in building the triangle mesh has also been measured and
the number of triangles for the mesh. Results are shown in the figure 2.19.
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It can be seen that the time spent in building the cell octree is longer than the
spent in building the bono, but the tree is built just once and the threshold can be
changed without building the tree again. The time spent in building the triangle mesh
and its number of triangles is similar. It can be seen as a proof of its quality. The
main advantage is found in the cell octree size which is smaller than bono tree.

We have also measured the error which is due to the prunnes, this error has
been measured as the average distance between the isosurface built from a cell octree
and a reference isosurface. For the models 1, 2 and 3 it is easy to have the reference
isosurface because the mathematical definition of the models is known. For the hu-
man models, the reference isosurface is built from the data at the highest resolution
and the test is done using a cell octree at one level less of resolution.

The test has been done representing the models by a cell octree and by a bono.
The results are shown in the table 2.1.

Model Representation Error
Neck Bono 0.38

Cell octree 0.38
Knee Bono 0.37

Cell octree 0.38
Head Bono 0.31

Cell octree 0.31
Model 1 Bono 0.00

Cell octree 0.04
Model 2 Bono 0.16

Cell octree 0.17
Model 3 Bono 0.30

Cell octree 0.35

Table 2.1: Error measurement

As you can see the error using a cell octree is similar to the error using a bono,
so we have a good representation with less space requirements.

Finally we have rendered the models using different colors depending on the
error as it is shown in the figure 2.20. The error is positive or negative depending
on where the isosurface is respect on the reference isosurface, inside or outside. Of
course, the average distance is computed without using the sign.
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The colored images are shown in the figure 2.21. It can be seen that, in general
the images have little error. Take into account that the human models are represented
using a level less of resolution.

The wide yellow areas in the image of the knee and in the model 3 are due to
that they are cut by the bounding box.

2.5 Chapter conclusions

A data structure for volume representation, called Cell Octree has been showed. It
is based on a tree, so it serves as index and allows to access to the different parts of
the represented volume in a quick way. The tree is allowed to have its leaf nodes on
different level, so it can be used to represent a volume by an adaptive way.

A cell octree can be built using different prunning criteria, in this chapter three
different prunning criteria have been presented. These prunning criteria have been
defined to use as visualization method the marching cubes [Lorensen, 87] method.
So they have been defined depending on the cualities of this method. In particular the
goal is to avoid cracks on an isosurface which is built in a multiresolution grid.

The data structure has been tested using real volumes from medical data and
also using mathematic volumes. It has been compared whith the structure called bono
[Wilhelms, 92] respect on the time spent to build the tree, its size, the time spent to
build the isosurface, its number of triangles and its error respect on the real isosurface.

As future work, we plan to study and define new prunning criteria and also
to use the data structure for progressive transmission of the volume. Another line on
which we are working is the adaptive visualization of the volume using the scheme
presented in this chapter.
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Figure 2.19: Bono vs. Cell Octree

error > 4

error < −4

error = 0

Figure 2.20: Colors to render the error
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Figure 2.21: Colored images respect on the error





Chapter 3

Progressive Transmission of Cell
Octrees

3.1 Chapter abstract

Due to the improvements of 3D scanners, volumetric model reso-
lutions get higher and higher. So data structures as well as algorithms
are needed to handle them properly. In this chapter, we present an algo-
rithm to transmit a volume through a network allowing the user to start
working on it without waiting for the whole volume to be received. The
algorithm uses the cell octree scheme as volume representation and car-
ries out the transmission in a progressive way. User receives the model
level by level from a poor resolution level upto the highest resolution
available. Some test has been done to show how the user can carry out
some kind of work on the model at a medium resolution level (with less
than 5% of the whole volume transmited) without waiting for the whole
transmission.

3.2 Introduction

Today, systems at whatever computer science scope are frequently interconnected by
network, this allows us for resource sharing, information centralization, information

51
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sending/receiving to/from other systems, etc. So, volume modeling and visualiza-
tion systems also enjoy this kind of advantages; however, the volumetric models size
is higher and higher, so the transmission trhough network of volumetric models be-
comes slower and slower.

Previous works tray to make faster the communication by transmitting only
the information which is useful to visualize the volume but the model is always stored
on the server [Engel, 99]. So, frequently a new visualization requires a new transmis-
sion, depending on which information is stored on the server and which one is stored
on the client. For example, some times a camera change can imply a new transmis-
sion.

We propose to carry out the transmission of the whole volume, but at a pro-
gressive way. Volumetric model is transmitted using different resolutions of accuracy,
in such a way that the process begins by transmitting the model using a low resolution
(few data obviously means little transmission time), the receiver has a version of the
model rather soon to work on it; the user can select a point of view as well as do other
visualization adjustements. Meanwhile, the system continues transmitting more data
in order to improve the resolution of the model which is being received by the client.
The system receives the whole volume but the user has not had to wait for the whole
transmission in order to have an operative volumetric model.

The progressive transmission is implemented on the basis of the cell octree
representation scheme [Velasco, 01b]. This scheme is useful for this purpose because
it is a multiresolution scheme that allows the user to handle the volume at different
resolution levels depending on the particular task to do.

In the following section, we describe the progressive transmission algortithm.
next section shows results and images of a volume transmitted at a progressive way.
The final section contains the conclusions drawn and outlines some possibilities for
future work.

3.3 Progressive transmission algorithm

As a cell octree is composed by a grid and a tree, in order to do a cell octree transmis-
sion we have to transmit grid values (to which we will simply note as values) and tree
nodes (simply noted as nodes). Sender and receiver must be synchronized so that the
information for which the receiver is waiting, be the same that the sender is sending
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to. Our proposal allows us to do the transmission without sending any extra informa-
tion for syncrhonization, even thougth the transmission is carried out at a progressive
way.

In this section, we are going to show the value transmission algorithm, the
node transmission algorithm and how both algorithms are mixed to get the cell octree
progressive transmission algorithm.

3.3.1 Value transmission

Values must be transmitted in such a way that the client can have a complete version
of the model from the begining; a model whose resolution will be improved step by
step, but it will always be a model of the whole volume. So the values that are sent
on the first step are the bounding box corners, and at every new step, the values that
are sent are the intermediate values between the previous step values. This proccess
is explained in detail in this section.

The transmission begins sending the bounding box size, noted as MAXX,
MAXY and MAXZ. From these data, sender and receiver can compute a new datum,
noted as distance, which will be the value transmission director. It is computed
using the equation 3.1.

distance = min{x = 2n : n ∈ N ∧ x≥max{MAXX ,MAXY,MAXZ}} (3.1)

distance defines how far two consecutive values are for a particular reso-
lution level. Equation 3.1 computes the distance datum for the worst resolution
level (distance is equal to a high number, so not all grid values are used). At every
new resolution level it is computed again by dividing itself by 2. distance will be
equal to 1 for the best resolution level (every grid value is used).

Once the client has received the model size and it has computed the dis-
tance datum it knows how much space needs to store the grid, and it knows in
which order it will receive the different values.

The algorithm, written in pseudo-C language, for the worst resolution trans-
mission (resp. reception) is shown in the figure 3.1.

For the other resolution levels, the algorithm has to be careful with not to
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FUNCTION sendRootValues ()
{

for (i = 0; i <= MAXX; i += distance)
for (j = 0; j <= MAXY; j += distance)

for (k = 0; k <= MAXZ; k += distance)
send (grid[i][j][k]);

}

Figure 3.1: Value transmission for the worst level (root level)

send values which have been already sent. For example, see in the figure 3.2 where
the worst resolution level for this 2D grid are the values represented by squares, the
medium resolution level are the values represented by circles together with the ones
represented by squares and the best resolution are all the values. When the system is
sending the medium resolution level, it only has to send the circle values, because the
square values have been already sent, and when it is sending the best resolution level,
it only has to send the diamond values because the others have been already sent.

worst resolution

medium resolution

best resolution

Figure 3.2: Progressive value transmission

The algorithm for all the resolution level transmission but the worst one is
shown in the figure 3.3. Let us explain it. A new resolution level uses the values
previously sent plus the values which are located in the middle position with respect
to the previous resolution level, for example, the medium resolution level in the figure
3.2 uses the previously sent values (squares) and the circle values (located on a middle
position between the square values). So, in 2D there are already sent values at the
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rows which are multiple of the distance datum for the previous resolution level.
In 3D there are already sent values at the layers which are multiple of the distance
datum for the previous resolution level and for every layer within values, these are
located at the rows which are multiple of the distance datum for the previous
resolution level.

FUNCTION sendLevelValues ()
{
oldDistance = distance;
distance /= 2;
for (i = 0, auxi = TRUE; i <= MAXX; i += distance, auxi = NOT auxi)

for (j = 0; auxj = TRUE; j <= MAXY; j += distance, auxj = NOT auxj)
if (auxi && auxj)
for (k = distance; k <= MAXZ; k += oldDistance)

send (grid[i][j][k]);
else
for (k = 0; k <= MAXZ; k += distance)

send (grid[i][j][k]);
}

Figure 3.3: Value transmission for other levels

To avoid sending values more than once, it is necessary to handle both dis-
tance data, the one that belongs to the current resolution level and the one that belongs
to the previous level. In the algorithm shown in the figure 3.3 both distances are han-
dled (distance and oldDistance), and using the variables auxi and auxj, it
is possible to know whether the sender is located on a layer and on a row within val-
ues already sent or not. If so, only the intermediate values (which are located every
oldDistance positions) are sent, else, all the values for this resolution level are
sent (located every distance positions).

3.3.2 Node transmission

The tree information has to be also transmited in such a way that the client always
have a model of the whole volume, from a poor resolution towards the highest one.
So the tree has to be transmited level by level. This section explains in detail the
process.

The tree transmission is carried out by traversing it by the first-breadth way,
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which allows us to traverse it level by level. So, a data structure queue will be nec-
essary to carry out the traversing, and a mark, beginLevel, will be necessary to
know when a new level begins.

Figure 3.4 shows the algorithm to transmit the tree, before explaining it let us
show the functions to handle the queue:

• emptyQueue(): Returns TRUE if the queue is empty, FALSE if not.

• lastQueue(element): Adds the element to the queue ending.

• firstQueue(): Returns the element located at the first position of the
queue, it is also erased from the queue.

The queue can store two kinds of elements: nodes and the mark beginLevel.

send (root);
lastQueue (beginLevel);
if (isInternalNode (root))

lastQueue (root);
exit = FALSE;
do {

element = firstQueue ();
if (element == beginLevel)

if (not emptyQueue())
lastQueue (beginLevel);

else
exit = TRUE;

else { /* element is an internal node */
for each element’s son {

send (son);
if (isInternalNode (son))

lastQueue (son);
}

}
} while (not exit)

Figure 3.4: Tree transmission

The main loop of the algorithm uses the queue to store internal nodes, and
for every internal node that is at the first position of the queue, it is erased from the
queue and all its sons are visited. If they are internal nodes, they are added at the
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queue ending; the loop stops when the queue is empty. The algorithm begins visiting
and adding the root node to the queue and continues as we explained above. It is easy
to see how the tree is traversed level by level.

This basic algorithm is modified with sentences to send nodes and to know
when a new level begins. For example:

• Before adding the root node to the queue, which is added only if it is an internal
node, this is sent and the mark beginLevel is added to the queue; the root
node is the last node of its level.

• Every time the mark beginLevel is at the first position of the queue, a level
is finished. If the queue is empty, the tree traversal is finished; if not, a new
level begins and the mark beginLevel is again added to the queue ending.

• Every time a node is at the first position of the queue, it is erased from the
queue, all its sons are sent, and those which are internal nodes are added to the
queue. As all the internal nodes are visited level by level, theirs sons are also
visited (sent) level by level.

3.3.3 Cell octree progressive transmission

To send a cell octree, which is composed by a grid and a tree, we have to combine the
previously shown algorithms into a new algorithm which is shown in figure 3.5. It
can be seen that this algorithm basically is the tree transmission algorithm but it has
been modified by inserting sentences to send the values for a level before sending the
nodes for that level (lines 4 and 14 in figure 3.5). In this way, all the values that can
be accessed through a received node will be stored in the receiver grid.

The reception algorithm, similar to the transmission one, is shown in the fig-
ure 3.6. This algorithm includes sentences to build the tree (lines 6 and 23 in figure
3.6) and to visualize the cell octree during the reception (lines 7 and 24); in other
applications this visualization could be unnecessary or other kind of process can be
carried out. Every node (leaf of internal) is visualized, when the sons nodes of an
internal node are received, the triangles built for the internal node are replaced by the
triangulation built for its sons. By this way, the visualization is refined meanwhile
the nodes are comming.
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1: send (MAXX, MAXY, MAXZ);
2: distance = computeDistance (MAXX,MAXY,MAXZ);
3: /* computeDistance uses the equation (1) */
4: call sendRootValues ()
5: send (root);
6: lastQueue (beginLevel);
7: if (isInternalNode (root))
8: lastQueue (root);
9: exit = FALSE;

10: do {
11: element = firstQueue ();
12: if (element == beginLevel)
13: if (not emptyQueue()) {
14: call sendLevelValues();
15: lastQueue (beginLevel);
16: } else
17: exit = TRUE;
18: else { /* element is an internal node */
19: for each element’s son {
20: send (son);
21: if (isInternalNode (son))
22: lastQueue (son);
23: }
24: }
25: } while (not exit)

Figure 3.5: Cell octree transmission

3.4 Results

The proposal shown in this chapter has been implemented and tested using real vol-
umes from the Visible Human Project without filtering and using a resolution of
220× 230× 220. The size of the data that are sent at every transmission level was
measured, and images for every transmission level were rendered. Data are shown in
table 3.1 and images in figures 3.7, 3.8, y 3.9.

In order to evaluate the image quality for levels 5, 6 and 7, these images
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1: receive (MAXX, MAXY, MAXZ);
2: distance = computeDistance (MAXX,MAXY,MAXZ);
3: /* computeDistance uses the equation (1) */
4: call receiveRootValues ()
5: receive (root);
6: newTree (root);
7: visualize (root);
8: lastQueue (beginLevel);
9: if (isInternalNode (root))
10: lastQueue (root);
11: exit = FALSE;
12: do {
13: element = firstQueue ();
14: if (element == beginLevel)
15: if (not emptyQueue()) {
16: call receiveLevelValues();
17: lastQueue (beginLevel);
18: } else
19: exit = TRUE;
20: else /* element is an internal node */
21: for each possible element’s son {
22: receive (son);
23: set element as son’s father;
24: visualize (son);
25: if (isInternalNode (son))
26: lastQueue (son);
27: }
28: } while (not exit)

Figure 3.6: Cell octree reception

were coloured according to the distance (error) between theirs isosurfaces and the
isosurface for level 8 (used as pattern). The error is positive or negative depending on
where the isosurface is respect on the pattern isosurface (i.e. inside or outside). The
average error was also measured, obviously without using the sign. Coloured images
and colour range are shown in figue 3.10.

It can be seen how at the level 6, with just the 5% of the total size transmited,
a good approximation is got allowing the user to carry out some kind of work, like
adjusting the camera, choicing the isovalue, etc. Meanwhile, new information is
coming and at the level 7 (only the 30% of the total size) a very good approximation
is got allowing the user to work with the model perfectly.
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Level Size for Level Total size
(bytes) (bytes)

0 10 10
1 78 88
2 624 712
3 4.752 5.464
4 28.776 34.240
5 186.856 221.096
6 1.141.012 1.362.108
7 7.339.684 8.701.792
8 21.896.104 30.597.896

Table 3.1: Transmission data

Figure 3.7: Images for levels 0, 1 and 2

Figure 3.11 shows a logarithmic diagram where it can be seen the relation
among time and image got. A constant bit rate transmission is assumed, so the rela-
tion can be established among size and image.

3.5 Chapter conclusions

An algorithm for progressive transmission of volumes is described. The algorithm
uses a particular representation of volumes, the cell octree scheme, which is very
useful for this operation because it is a multiresolution scheme, so volumes are trans-
mited using the different resolution levels stored in the model. The user begins re-
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Figure 3.8: Images for levels 3, 4 and 5

Figure 3.9: Images for levels 6, 7 and 8

ceiving a low resolution (but fast) model that allows him or her to carry out some
kind of work, meanwhile the resolution model is improved by the new transmissions.

The main advantage of the proposal is that the system does not require to
send or receive extra information even although the transmission is carried out at a
progressive way. Moreover the model is stored in the receiver, so a change of point
of view or isovalue does not need new transmissions.

The proposal can be improved by carrying out an adaptive transmission: the
user select an interest area and then the sender continues by only transmiting this area
of the model, so the user receives the interest area at a high resolution and the rest of
the model at a medium or poor resolution.
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Level 5 - average error 3.20 Level 6 - average error 1.28

error > 4

error < −4

error = 0

Level 7 - average error 0.34 Colour range

Figure 3.10: Coloured images according to error

1 10 10 10 10 10 10 10 108765432

(bytes)

Figure 3.11: Relation among time and image got



Chapter 4

A Method for Isosurface
Extraction

4.1 Chapter abstract

Volumetric data can be represented as a rectilinear structured grid
and can be displayed by the rendering of an isosurface that is built
from the grid and defining a threshold value. The know marching cubes
method builds the isosurface cell by cell. However, from a set of cells
that comply with some conditions, a bigger cell can be built. In these
cases, the volume is represented by a set of cells of different size. Then,
the isosurface built by marching cubes will have holes on the borders
between cells of different size. In this chapter, we show a new method,
called marching edges, to build the isosurface edge by edge, that gener-
ates a hole-free isosurface.

4.2 Introduction

Volumetric data are usually represented as a set of property values vi at a set of points
(xi,yi,zi) : i = 1,2, . . . ,N; these values are samples from some unknown continuous
function f (x,y,z). In order to obtain pictures from that set of samples, a process of
three step can be done [Haber, 90]:

63
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1. Data enrichment: An estimation, F(x,y,z), of the unknown function f (x,y,z)
is made with which new couples (point, property value) can be estimated.

2. Mapping: Some geometric interpretation of the function F(x,y,z) is chosen in
order to understand its behaviour. This geometric interpretation will typically
be a three dimensional object that can be rendered in the next step.

3. Rendering: The geometry obtained in the previous step is rendered using stan-
dard computer graphics techniques.

An usual way to render volumetric data is the marching cubes method
[Lorensen, 87]. A rectilinear structured grid of the samples is made from the original
volume data; an isosurface F(x,y,z) = vk is built and rendered for some threshold
value vk. Only a subset of the volume is rendered.

In order to build the surface, every cubic cell in the grid is processed: each cell
is classified like one of 15 distinct cases by comparing vk with the property values of
the 8 vertices of the cell; every case has a triangulation that represents the isosurface
inside the cell; the union of all piece of isosurfaces of all cells forms the isosurface
that is rendered.

Since 1987, several papers have been published about the improvement of
marching cubes method [Brodlie, 01].

Concretely, this method needs a long time, most of which is spent processing
cells that do not have isosurface inside. In order to reduce this time, several methods
have been proposed to search for cells intersecting the surface. These methods can
be classified according to the search criteria used:

• Range-based, each cell is labelled with the interval that it spans in the range
of the property field. This allows to search for intervals that contain a given
threshold value. Cignoni et al. propose to use an interval tree structure
[Edelsbrunner, 80, Preparata, 85] in order to retrieve these intervals, from
which active cells are found [Cignoni, 97]. In particular, they use a method
that combines range-based and surface-based search.

• Surface-based, only the cells that are adjacent to cells for which the surface
has been previously rendered are processed [Shekhar, 96]. This solution does
not display the complete surface when it has more than one component. It is
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necessary to have a seed set of cells from which all the components can be
rendered. Bajaj et al. propose a method to generate seed sets that allow to get
all components for all possible threshold values [Bajaj, 96].

• Space-based, domain spanned by the data set is partitioned in order to search
active cells. These partitions can be hierarchical [Wilhelms, 92].

A tipical space-based searching is the bono structure. Wilhelms et al. pro-
posed to build an octree [Meagher, 80] that indexes the grid, and which stores, in
every octree node, the maximum and minimum property value of the subvolume
covered by the node [Wilhelms, 92]. This information is used when traversing the
volume and allows that those nodes for which the property interval does not contain
the threshold to be skipped. This structure, called BONO (Branch On Need Octree),
makes the rendering faster but increases the storage requirement as it must store both
the grid and the octree.

Other advantage of the tree is the multiresolution capability. Volume can be
rendered at different levels of detail by pruning the tree at a specific level when it is
rendered. Furthermore, an adaptive isosurface can be built if different branches of
the tree are pruned at different levels. Works like [Ohlberger, 97, Westermann, 99]
use these issues, however, the prune condition is dependent on the threshold and, in
the case of [Westermann, 99], also on the point of view.

It is also possible to use hierarchical structures and prunning of branches ori-
ented to the visualization process. Livnat et al. use a bono in order to do a hierar-
chical front-to-back traversal of the data set with dynamic pruning of sections that
are hidden from the point of view by previously extracted sections of the isosurface
[Livnat, 98]. Only the isosurface that is visible from the point of view is built. When
the viewpoint changes, the isosurface must be re-built.

However, when different branches of the tree are pruned at different levels,
there will be joined cells of different size. Then, holes (or cracks) on the isosurface
can arise on the border between those cells of different size. This is because the
isosurface inside the large cell is built from less information than the isosurface inside
the small ones (see figure 4.1).

Several solutions have been proposed for this problem. Shu et al. propose
covering the crack with a polygon [Shu, 95]; Shekhar et al. propose removing it
by moving the vertices of the triangles in the small cells so that they coincide with
the edges of the triangle in the big one [Shekhar, 96]; Westermann et al. propose to
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Figure 4.1: Example of crack

replace a triangle in the large cell with a fan of triangles, in order to adapt the iso-
surface inside the large cell to the isosurface inside the small ones [Westermann, 99];
this method with several improvementes is used by Engel et al. to implement a web-
based volume visualization system [Engel, 99]. In these cases, the process can be
performed after the triangle mesh has been built or when it is being built.

In a previous chapter we proposed a modification of bono, called cell octree,
in which the branches that represent a set of cells whose property values verify some
uniform gradient conditions are forever pruned [Velasco, 01a]. The main difference
between a cell octree and other approaches is that the prune condition is independent
on the threshold. Note that this does not forbit to use an aditional view dependent
prune condition.

In a cell octree, cells of different size can be adjacents. In order to avoid
crashes on surfaces that cross over two adjacent cells of different size, the prune
condition is very restrictive. That is, it allows to prune a branch only when it can be
ensured that no crack will appear for any threshold value.

In this chapter, we present a method to build the triangles of the isosurface,
edge by edge instead of cell by cell. Isosurfaces built with this method can cross the
border between cells of different size without any discontinuity. This is so because
there are no triangle’s vertices on the border between cells, then it is not necessary to
make coincide any geometric data on both sides of that border. The cells will have up
to one triangle’s vertex that will be inside the cell. So, triangles will cross the border.
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The quality of no discontinuity allows us to use a less restrictive prune condition
obtaining a cell octree with less storage requirements.

In section three our proposal, called marching edges, is presented, where the
concept of isopoint is explained. In section four we explain how to compute the
isopoints, how to label the edges to avoid processing an edge more than once, and the
rendering algorithm. Finally, section five shows data and pictures from real volumes.

4.3 Marching edges

Let c be a cell intersected by the isosurface. This cell, called active cell, has some
edges that are crossed by the isosurface. These edges are called active edges. Let
us consider the active edge (A,B) on the figure 4.2; the active edge is shared by four
active cells. For every cell one point inside of it, called isopoint, is calculated and
two triangles are built by the four isopoints.

Figure 4.2: Triangulation for an active edge

Let us consider now cells of different size. Only two distinct cases are possi-
ble: first, the active edge (A,B) in the smallest cell is on a face of a larger one (figure
4.3); second, the active edge (A,B) in the smallest cell is on an edge (C,B) of a larger
one and it is not on a face of another cell (figure 4.4).

Every cell that shares the active edge contributes one isopoint to the triangu-
lation, so the triangulation of the first case is made using one triangle, whereas the
triangulation of the second case is made using two triangles.

In both cases, if the small edge is active, then the large cell is active too, as
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Figure 4.3: Triangulation by 1 triangle

Figure 4.4: Triangulation by 2 triangles
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the large cell is monotonous.

So, the number of distinct cases by marching edges is three, when the edge is
not active, no one triangle is generated; when the edge is shared by three cells (figure
4.3), one triangle is generated; and when the edge is shared by four cells (figure 4.4),
two triangles are generated.

This method has a drawback: some cases of active cells (the cases 1, 3, 4,
6, 7, and 13 of [Lorensen, 87]) generate more triangles by marching edges than by
marching cubes. However, other cases (the cases 5, 9, 11 and 14 of [Lorensen, 87])
generate less triagles by marching edges than by marching cubes.

For example, in the figure 4.5 we can see the case number 1 of [Lorensen, 87]
that generates one triangle using the marching cubes method. As shown in the figure
4.6 the same configuration has three active edges. For each active edge, up to two
triangles are generated using marching edges. These triangles are shared by up to
four cells; then, the active cell generates 1.5 triangles.

Figure 4.5: Case 1 by marching cubes

The case number 8 of [Lorensen, 87] (figure 4.7) is one of the most common
in data sets, figure 4.8 shows how it is triangulated by marching edges, it can be
seen that it generates the same number of triangles than using marching cubes. The
isopoints have been marked by black circles.

The number of triangles built by our method can be between a 25 % less and
a 50 % greater than when the marching cubes method is used.
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Figure 4.6: Case 1 by marching edges

Figure 4.7: Case 8 by marching cubes
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Figure 4.8: Case 8 by marching edges

However, the advantages of our proposal are:

• The border between cells of different size will not have any crack, because
triangle’s vertices will not be on the faces, and so, they will not depend on the
different number of samples for that border in the large cell with respect to the
small one. Triangles will cross those borders (see figure 4.9).

• Thanks to the previous advantage, the prune critera used in [Velasco, 01a] can
be less restrictive; only the monotony conditions are used, the condition about
the center of the faces are not needed. So more prunes are done. Moreover,
any property value needs to be changed at any vertex.

• The more prunes are done, the less storage space is needed.

Figure 4.9: The advantage of no cracks
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The edges on the limit of the volume do not generate triangles even if they are
actives, because there are no cells on the other side. If it is needed, volume must be
resized or repositioned.

4.4 Implementation

Every active edge generates one or two triangles. The vertices of these triangles are
into the cells sharing the edge. For every active cell the location of the triangle vertex,
that is unique, is computed using only information local to the cell. This ensure that
all triangles crossing the cell are joint at the same vertex avoiding crash. We will
show now how the location of the vertex, that we call isopoint, is computed.

4.4.1 Computation of Isopoints

We present the method we use to calculate the isopoint that uses information about
the cell and the threshold. Other methods like using a fix relative position can be
faster but also they can generate worse isosurfaces.

Let c = (c.x,c.y,c.z,c.s) be an active cell where (c.x,c.y,c.z) is the cell’s ver-
tex nearest to the origin, and c.s is the size of the cell. And let vk be the threshold
value. The isopoint of the cell c will be a point P ∈ c that represents the cell in order
to build triangles.

In order to calculate the isopoint P, (see the figure 4.10) the central point pc

and its property value is computed by the function F . For every cell’s vertex pi we
can know if the isosurface crosses the virtual line li between pi and pc. If li is crossed,
an isopoint Pi can be computed by linear interpolation. The isopoint P = (P.x,P.y,P.z)
will be the average point of all the Pi computed in the cell.

The gradient vector G = (G.x,G.y,G.z) at P is computed as:

G.x(P) = (G.x0 · (1−∆y)+G.x1 ·∆y) · (1−∆z)+

(G.x2 · (1−∆y)+G.x3 ·∆y) ·∆z

being
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Figure 4.10: Computation of isopoints

∆x =
P.x− c.x

c.s

∆y =
P.y− c.y

c.s

∆z =
P.z− c.z

c.s

and

G.x0 = F(c.x+ c.s,c.y,c.z)−F(c.x,c.y,c.z)

G.x1 = F(c.x+ c.s,c.y+ c.s,c.z)−F(c.x,c.y+ c.s,c.z)

G.x2 = F(c.x+ c.s,c.y,c.z+ c.s)−F(c.x,c.y,c.z+ c.s)

G.x3 = F(c.x+ c.s,c.y+ c.s,c.z+ c.s)−
F(c.x,c.y+ c.s,c.z+ c.s)

G.y and G.z are computed in a similar way.

The gradient vector is used to allow a shadowed rendering, like the one dis-
played by the phong method [Bui-Tuong, 75].

Every isopoint is computed just once, they are stored in a set of isopoints to
use them when it is necessary.
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4.4.2 Edge Labeling

Every edge can be shared by up to four cells. If the volume is processed cell by cell,
and for each cell, all its edges are processed, every edge can be processed up to four
times. So every cell has a label to indicate what edges must be processed. Every edge
in the volume is processed just once.

A cell octree can have cells of different size, the edges that are shared by
cells of different size (figures 4.3 and 4.4) are labeled and processed in the smallest
cell. This is so in order to make easy the searching of neighbourg cells to find the
needed isopoints to build triangles. When a labeled active edge is being processed, it
is necessary to find the isopoints (to build triangles) inside the neighbour cells. Note
that our method can process only edges that are shared by up to 4 cells. When an
edge is shared by cells of different size, we process the edge on the smallest cell.

In every cell, only the labeled edges are processed, then the minimun and
maximun property values stored at each cell are only computed in function of the
labeled edge’s vertices, so the intervals [min,max] stored in the tree’s nodes can be
smaller and some tree’s branches will not be processed with a higher probability and
the visualization time will be shorter.

Note that the prune criteria and the edges labeling is independent on the
threshold value.

4.4.3 Visualization

The pseudocode of the procedure to render the volume is shown in the figure 4.11,
where V1 and V2 are the vertices of the edge E and F(vertex) is the estimated
volume function.

4.5 Results

The proposed method has been implemented and compared with bono using march-
ing cubes, and cell octree using marching cubes. Tests have been performed with the
volumes showed in figure 4.14. The volumes have been modelled from TAC and the
data have been normalised between 0 and 255 (the threshold for the tests is 60).

Table 4.1 shows the storage requirements for the octree. Table 4.2 shows the
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render_volume (node N,threshold T)

{

if (N has sons)

for each son S of N

if (T is between min and max of S)

render_volume (S,T)

else /* it is a leaf node */

for each labeled edge E=(V1,V2) of N

if (T is between F(V1) and F(V2))

{

classify E

compute the isopoints

show the triangles

}

}

Figure 4.11: Pseudocode of render_volume

time used to build the tree. Table 4.3 shows the number of triangles of the isosurface.
The time used to build the isosurface is shown in table 4.4. Figures 4.12 and 4.13
shows a plot of these data against the size of the volume.

Volume Finger Eye Head
Size 17×32×32 64×64×64 128×128×128

Bono 24.144 299.600 2.396.752
Cell Octree (m. cubes) 23.248 190.032 1.587.088
Cell Octree (m. edges) 18.775 144.535 1.330.857

Table 4.1: Storage required by tree (bytes)

In the diagrams about the isosurface the lines of bono and cell octree (m.
cubes) are in the same position as the results of both methods are very similar (see
tables 4.3 and 4.4).

We can see that there is a reduction in the storage requeriment and in the time
to build the isosurface whereas the quality of the images is good, figure 4.15 shows
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Volume Finger Eye Head
Size 17×32×32 64×64×64 128×128×128

Bono 1 8 58
Cell Octree (m. cubes) 4 29 231
Cell Octree (m. edges) 8 64 590

Table 4.2: Time to build the tree (ms)

Volume Finger Eye Head
Size 17×32×32 64×64×64 128×128×128

Bono 3.586 34.232 376.998
Cell Octree (m. cubes) 3.586 34.226 376.804
Cell Octree (m. edges) 4.828 40.328 463.682

Table 4.3: Number of triangles of the isosurface

Volume Finger Eye Head
Size 17×32×32 64×64×64 128×128×128

Bono 5 45 513
Cell Octree (m. cubes) 4 45 512
Cell Octree (m. edges) 2 18 236

Table 4.4: Time to build the isosurface (ms)
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Figure 4.12: Diagrams about the tree.

Figure 4.13: Diagrams about the isosurface.

Figure 4.14: Images from volumes used
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on the left side a zoomed picture by marching cubes and on the right side the same
subvolume rendered by marching edges. The time to build the tree is much longer,
but this process is done just once. The number of triangles of the isosurface is greater
than using marching cubes.

Figure 4.15: Marching cubes vs. marching edges

The reduction in the storage requeriment shows how the prunning criteria is
less restrictive.

The number of triangles can be reduced by decimation. Schroeder et
al. propose deleting points of the triangle mesh and making a retriangulation
[Schroeder, 92]. Montani et al. propose to build the isosurface so that triangles can
easily be in the same plane, and then retriangulate them [Montani, 94]. In our pro-
posal, if the isopoints that are chosen to represents the cells are in the center of the
cells, many triangles will be in the same plane too.

4.6 Chapter conclusions

A new method for volume visualization by surface extraction has been proposed.
We have presented a method to build the triangles edge by edge instead of cell by
cell. This method reduces the number of distinct cases from 15 (marching cubes
[Lorensen, 87]) to 3. Also, it avoids that cracks are arisen when the surface crosses
the border between cells of different sizes, neither pre-process nor post-process are
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needful. Thanks to it, the prunning criteria used in [Velasco, 01a] can be less restric-
tive. So, more prunes can be done and at a higher level of the tree. As a consequence
of this, the storage space requirement of the tree has been reduced.

We are currently working on an improvement to store the properties in the
tree avoiding the use of the grid, to obtain further reduction in space used. Also, we
are studying particular cases of cells in order to reduce the number of triangles built.
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