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This document is intended to be a guide, in English, that contains the main
elements of the PhD. thesis document to which it is attached. Chapters have been
summarized and the main contributions of the PhD. thesis are maintained. All
references to figures, tables, equations, definitions, etc. are related to the PhD.
thesis Document.

The framework of this thesis is the context of volume models. If something
can be distinguished in these type of models it is that they try to characterize
real objects through the representation of certain property values belonging to
certain property domains. Therefore, with these kind of models we are interested
in representing both the space occupied by the object and the change in values
of the property domains of interest.

The goal of developing such models is to provide a set of software tools that
permit study of the properties of the objects thus represented, displaying the
information contained in such a way that the observer can understand that infor-
mation and simulate the real object manipulation on the computational model.
Figure 1 shows some examples of images that can be obtained from such models.

In general, a volume can be defined as a subset of 3D space whose points
represent values of a property domain. A volume defined in this way can be
represented by a function that matchs points of a subset V of the 3D Euclidean
space in a property domain Γ:

f : V ⊂ R
3 7→ Γ

However, when working with volumes that have been obtained in a discrete
manner, we do not know the value of the function f throughout the volume of
interest. We only have available the set of samples with the associated values of
f . What is often used in these type of volume models is an estimate F of the
function f obtained from the property values of the samples.

Nowadays, due to the large number of samples that are generated by the devices
of volumetric information scanning and also to the technological improvement of
computers, the amount of information that it is necessary to represent in volume
models is increasingly growing, so it is necessary to provide models that are
capable of reducing this amount of raw information provided by such equipment.

This work proposes a representation scheme that reduces the amount of in-
formation needed to represent the volumetric data. In addition, a volumetric
representation that allows the visualization and manipulation of such data is pro-
posed. Chapter 1 shows the context of volume visualization, in which our work
is included. Chapter 2 shows a representation that combines the advantages of
the two main approaches used in the discrete volume representations, voxels and
cells. Chapter 3 describes our proposal for volume representation and evaluates
its characteristics with respect storage space saving, processing time and quality
of the isosurfaces extracted from it. Chapter 4 shows an application of our repre-
sentation to virtual sculpture, in which its ability to allow interactive response
times during the application of modeling operations can be seen. Finally, Chapter
5 presents conclusions of our thesis and future research paths.
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CHAPTER 1

A Review of Volume Modeling

Chapter 1 shows the volume visualization framework including concepts, ter-
minology and the main problems that arise when working with volume data. It
references and discusses the most outstanding earlier works which in our opinion
deal with such problems.

Without intending to cover the large number of work on the theme, our aim is
to establish a nutshell that enables exposure of terminology and raises the issues
that arise in this area. The section Solid Modeling describes the methods of re-
presentation of homogeneous objects. Models of this kind permit us to establish
clearly the properties that are required for modeling real objects and, these mo-
dels, in some cases with some additional extensions, permit us to represent the
inhomogeneity inherent in volume models. The section on Representation Sche-
mes establishes a formal framework upon which modeling of objects is performed
and presents some desirable properties for such schemes. Section 1.4 describes the
various strategies that are used to represent a solid which can be applied through
small extensions to volume modeling.

Section 1.5, Volume Modeling, presents the main elements that are required
to establish a volume model. There are two major strategies for volume mode-
ling: continuous representations and discrete representations, and in particular
we emphasize the latter ones, since this thesis develops a representation that fa-
lls into that second group. In the next section, visualization has been specially
distinguished from other operations, as it is that which has received special at-
tention in the bibliography. This section presents the two major strategies used
to address visualization and makes special emphasis on contouring, as this has
been the strategy used for visualizing our representation.
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CHAPTER 2

Multiresolution Representation
of Volumes

A discrete volume representation must be capable of calculating the property
value associated with any point P included in the volume bounded by the posi-
tions of the samples. The incessant increase in the resolution of the sets of samples
produces representations needing high storage requirements. The fixed-resolution
discrete representations maintain all the sample information, making their use
unfeasible for sets with many samples of high resolution. The alternative is to
build discrete representations of variable resolution (multiresolution representa-
tions) from the samples, using for this purpose a mechanism to reduce the amount
of information necessary for storing.

The goal of the representation proposed in this chapter is to save space with
respect to a volumetric representation of fixed resolution, taking into account
the spatial coherence among the values of the samples. The idea is to reduce the
amount of information stored in the regions of the initial set of samples that may
be considered homogeneous.

This chapter shows the main approaches used when building discrete represen-
tations, both as fixed or variable resolution. The problems posed by the latter
and our proposal for a multiresolution representation. The section discrete volu-
metric representations characterizes these type of representations, then presents a
possible definition general enough to cover fixed and variable resolution represen-
tations. Next, it describes the main elements of a fixed-resolution representation
under the terms of the two main work approaches: voxel and cell. Following this,
we study the continuity provided by both approaches and the basic operation
making it possible to estimate the property value at any point P included in
the volume represented. The section ends presenting variable-resolution repre-
sentations. For these representations we examine the use of the two approaches
previously mentioned on these type of representations and highlight the particu-
larities of each of them on a octree, which acts as data structure for supporting
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CHAPTER 2. Multiresolution Representation of Volumes

them. Finally, it compares the two approaches with respect to its ability to reduce
space requirements and the continuity provided for calculating the property value
at any point P included in the represented volume.

Section 2.3 shows the work that has been undertaken in reducing the space re-
quired by the discrete representations. There are two areas: volume compression
and volume simplification. Section 2.4 presents our proposal for multiresolution
representation based on the concept of the homogeneous region which exploits the
spatial coherence of property values. Firstly, the concept is described and then is
formally defined on a uniform grid of samples. Then, it is applied in constructing
our representation: HRB-Octree. Next, we compare our representation with the
traditional approaches, voxels and cells, to show its advantages and drawbacks.
Finally, section 2.5 explores the error produced when calculating the property
value at a point using our representation, compared to using a fixed-resolution
representation based on the cells approach. It is shown that the error only depends
on the error tolerance set in the domain of property values, an further, an analy-
tical expression which determines that error is provided. Next, we summarize the
main sections of the chapter.

2.1. Volume Representations

Merely a brief introduction.

2.2. Discrete Volume Representation

The two main features of the discrete volume representations are the discrete
nature of the data from which they are built and the layout or spatial structure
of the data. The first feature generally requires some type of interpolation. The
second feature permits classification of these representations both regular and
irregular. We may define a discrete volume representation of an object as a finite
set S of pairs of values (Pi, vi), where vi represents the value of an object’s
property located at position Pi in 3D space. The pair may represent samples of
any property of an object taken at different positions, or evaluations of a known
function f in a given volume of space. The domain where vi values are included
may be a single set of values (single-valued) representing a unique property of
the volumetric object; the Cartesian product of several sets of values representing
several properties of the volumetric object, and even, vi may be a vector. In
addition, in order to allow the calculation of the property value across the space
taken up by the represented object, a discrete representation must provide a way
of interpolating among pairs of values (Pi, vi). Next, we propose a more formal
definition of discrete volume representation:

Definition 1 (Discrete Volume Representation) A discrete volume repre-
sentation is a pair consisting of:

A finite set of samples, S, whose elements are pairs (Pi, vi). The first ele-
ment of the pair represents a position in 3D space and the second represents
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2.2. Discrete Volume Representation

a property value that belongs to a property values domain, (V ). In addition,
each point Pi must have a single property value vi.

An interpolation function, F , to estimate the property value at any point
within the space bounded by the positions represented by the Pi of S.

RVd ≡ (S ≡ {Pi : R
3; f(Pi) = vi : V | Pi 6= Pj ∀ i 6= j ∧

∧ i, j = 0, 1, . . . , n · (Pi, vi)}, F : R
3 7→ V)

where f(Pi) = vi represents the case in which the function from which the
samples have been taken is known, although there may be cases in which this
function is not known, so that only the value vi corresponding with each sample
is available.

2.2.1. Fixed-resolution discrete representations

This subsection shows the two major interpolation functions that are used
to calculate the property value in discrete volume representations: zero-order
interpolation and trilinear interpolation. Each of them determines the two main
approaches, voxels and cells, used to construct discrete volume representations.
In these kind of representations, the set of samples S is laid out in a uniform
manner. This way, points Pi determine a uniform grid into the space taken up
by the representation.

2.2.2. Calculating the property value at a point in fixed-resolution
representations

This subsection shows how we estimate the property value of any point P

included in the space associated with a discrete volume representation for both
approaches voxel and cell. We assume the data structure that supports the repre-
sentation is a Volume Buffer. It is necessary to define a function τ to obtain the
samples of S that are needed to perform interpolation. These samples depend on
the subvolume (voxel or cell) that includes P . An efficient method of identifying
the subvolume that includes P is proposed for each of the approaches.

Figure 2.4 shows the shape of the interpolation function in the voxel approa-
ch (top image) and in cell approach (bottom image) for the 1D case. It can be seen
that the function for the voxel approach presents discontinuities between neigh-
boring voxels, while the function for the cell approach is a continuous function
with C0 continuity.

2.2.3. Variable-resolution discrete representations

In these representations the set S is not uniformly distributed. Therefore, sub-
volumes that make up the partition of the space associated with S present a
variable size, unlike fixed-resolution representations in which they only have a
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CHAPTER 2. Multiresolution Representation of Volumes

single uniform size. This subsection discusses the advantages and disadvantages
of both approaches, voxel and cell, with regard to:

Memory space saving for avoiding the storage of oversampled regions.

The shape of the interpolation function for property values.

For the disccusion it is assumed that the function f(x) that distributes property
values over the volumetric object is unknown. It is therefore necessary to under-
take a process that determines which regions in the volume are oversampled. For
each region of this kind, we associate a larger subvolume that represents the sub-
volumes of higher resolution which are related to this region of similar property
value. This variation in the size of the subvolumes that make up such representa-
tions justifies the need to use a hierarchical spatial structure to support them. In
this subsection the choice of an octree is justified, displaying its advantages and
disadvantages.

We study the behavior of the octree with regard to memory saving, considering
the saving of samples produced by the aggregation of neighboring voxels (or cells)
that present a similar property value, along with the restrictions which the octree
imposes. It should be noted that subvolumes associated with an isotropic set have
cubic shape and the ones associated with an anisotropic set have a parallelepiped
shape. However, although its shape varies, the number of samples of the set S

associated with each subvolume simply depends on the approach used. It should
be remembered that in the voxel approach the number of samples associated with
a subvolume is just one, and this number is equal to eight in the cell approach,
regardless of subvolume size. Therefore, the study of the number of samples that
are saved by adding neighboring subvolumes of higher resolution into one of lower
resolution is independent of the type of geometry imposed by the distance between
samples.

With the aim of saving storage space, when a region consisting of eight neighbo-
ring subvolumes having a similar property value is detected, removal of samples
can be done. The number of samples which we can avoid storing in the new
subvolume is expressed by the following equations, depending on the approach
used:

Voxel approach : nS = ndim − 1 (2.1)

Cell approach : nS = (n − 1)dim (2.2)

where n is the number of samples per dimension of the new subvolume and dim

the dimension of the space in which we are working. In this case dim = 3. nS

indicates the number of samples that are eliminated, allowing the storage space
that they were taking up to be saved.

Figure 2.6 shows this fact graphically for case 2D. It can be seen that the
number of samples that may be saved using the voxel approach is three, as the
space taken up by one of them is used to store the property value associated with
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2.2. Discrete Volume Representation

the new voxel. However, in the cell approach only the space taken up by a single
property value can be saved. It is necessary to keep the storage space taken up
by the rest of samples, as these samples are needed to permit the possibility of
calculating the property value of any point P included in any of the neighboring
cells of higher resolution.

The explanation lies in the fact that, with the voxel approach, the subvolume
contains the sample in its interior, while in the cell approach, samples are shared
between adjacent subvolumes. Therefore, the number of samples which the ag-
gregation of subvolumes allows us to save in the voxel approach is independent of
the size of adjacent voxels, and is determined by equation 2.2. However, the spa-
ce saving that is taken up by the samples in the cell approach, expressed by the
equation 2.3, depends on the size of adjacent cells. In fact, this equation is a pes-
simistic estimate, since all adjacent cells have a smaller size. Whenever the size of
adjacent cells is less than that of the new cell, then all the samples must be kept.
The greatest saving that can be achieved in the cell approach occurs when the six
face-neighboring cells, together with the twelve possible edge-neighboring cells,
have a size greater than or equal to that of the new cell. The vertex-neighboring
cells have no influence, since the storage space of the shared vertex can never be
saved, regardless of the size of these cells. In the most favorable situation, the
number of samples that are saved is given by the following equation:

Cell approach : nS = (n + 1)dim − 2dim (2.3)

where n is the number of higher resolution cells added per dimension and dim

the dimension of the space in which we are working. In this case dim = 3. nS

indicates the number of samples that are eliminated, allowing the storage space
that they were taking up to be saved.

As a result, the cell approach provides only an upper and lower bound in the
number of samples that we can avoid storing. In addition, as shown in Figure
2.7, the cell approach penalizes the requirement for space saving because there
are property values (or references to them) that must be stored more than once
in the leaf nodes of the tree, such as the four surrounded by a red circle shown
in the figure. This redundancy produces a waste of storage space.

2.2.4. Calculating the property value at a point in variable-resolution
representations

This subsection shows that in variable-resolution representations the interpola-
tion function for the voxel approach remains discontinuous between neighboring
voxels. However, as shown in Figure 2.8, in the case of these representations, the
function for the cell approach may be discontinuous on the border between cells
of different sizes.
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CHAPTER 2. Multiresolution Representation of Volumes

2.3. Previous work in space saving

In this section we comment on the preliminary work related to space saving in
discrete volumetric representations.

2.4. Our representation proposal

Considering the advantages and disadvantages presented by the voxel and cell
approaches with regard to space saving and the continuity of the function that
calculates the property value for any point in the volume, our multiresolution
discrete representation establishes a compromise between the two.

The aim is to start from a uniform discrete representation and to achieve as
a result an irregular representation of the same data, with a loss of information
bounded by an error tolerance. The resulting irregular representation does not
store redundant information at regions where it is unnecessary. The highest reso-
lution voxels contained in these regions are replaced by lower resolution voxels.
In addition, it is our intention that the resulting representation shows a property
values distribution as near as possible to the initial uniform discrete representa-
tion. Our representation is based on an octree whose leaf nodes represent voxels
of variable size.

2.4.1. Homogeneous regions

This subsection is a formalization of the concept of homogeneous region in a
discrete volume representation with scalar property values.

Definition 2 (Homogeneous regions) Given a finite set S composed by pairs
of values (Pi, vi), where vi represents the value associated with any scalar property
of the object located at position Pi in 3D space, a homogeneous region of S is
defined as a subset U ⊆ S whose elements satisfy the following conditions:

1. All the elements in U make up a connected set on the 3D grid structure of
S.

2. The similarity criterion is the equality, i.e. the property value vi of each
element in the set U is the same.

U = {(Pi, vi) ∈ S | ∀ (Pi, vi), vi = K} ∧ U is connected

Definition 3 (Quasi-homogeneous region) Given a finite set S composed by
pairs of values (Pi, vi), where vi represents the value associated to any scalar
property of the object located at position Pi in 3D space, a quasi-homogeneous
region of S is defined as a subset U ⊆ S whose elements satisfy the following
conditions:

1. All the elements in U make up a connected set on the 3D grid structure of
S.
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2.4. Our representation proposal

2. The similarity criterion is a numerical error range in the property values
domain, so that the difference between any two property values for the ele-
ments in the set never exceeds a threshold ǫ.

U = {(Pi, vi), (Pj, vj) ∈ S | ∀ (Pi, vi), (Pj, vj), |vi − vj | < ǫ} ∧ U is connected

Next, the concepts N6-Neighborhood, 6-adjacency, and connectivity on grids
are defined because they are used in the definitions above. These concepts are
illustrated graphically in Figure 2.9. Figure 2.10 shows a 2D example that illus-
trates the constraints imposed by the octree on the shape of the homogeneous
regions it may represent. These constraints are due to the type of spatial subdi-
vision carried out.

2.4.2. Homogeneous regions with edge Octree: HRB-Octree

This subsection describes our representation proposal. Our idea is to combine
an octree whose leaf nodes represent voxels and a way of calculating the property
value based on the cell approach, but applied to those voxels, so as to achieve
continuity in the distribution of values.

To achieve this goal we will establish a partition in the space occupied by each
voxel, considering two well differentiated areas. All voxels have an outer zone or
edge with a thickness ∆x

2
, ∆y

2
, and ∆z

2
for x, y, and z dimensions respectively.

The highest resolution voxels are made up only for this type of zone. Voxels re-
presenting homogeneous regions generated from aggregation operations are made
up by an edge zone and an inner zone which corresponds with the rest of its
volume. Figure 2.11 illustrates this partition of the space taken up by each voxel
graphically. The inner zones are colored in green, and the edge zones in pale blue.
It can be seen that the highest resolution voxels which are located at the bottom
right lack inner zones.

Using this partition, when the calculation of the property value of a point
P in the volume is performed, firstly, we must determine whether this point is
included in an inner zone or in an edge, and then, depending on the type of
zone the property value is estimated by zero-order interpolation (inner zone) or
trilinear interpolation (edge).

Proceeding this way, a distribution of property values which presents C0 con-
tinuity between neighboring voxels with different size is achieved. In the central
part of the figure 2.13 the two types of zones are shown, inner and edge, colored in
green and pale blue respectively, along with the shape of the distribution function
for property values in 1D. The picture located at the top shows the distribution
of property values for a voxel of the highest resolution and a double-sized one
obtained as a result of carrying out an aggregation operation of two neighboring
voxels of the highest resolution. The distribution of property values for the two
voxels before the aggregation operation is shown in grey. The picture located at
the bottom shows the distribution of property values for a cell of the highest
resolution and another one with twice its size that results from eliminating the
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CHAPTER 2. Multiresolution Representation of Volumes

sample shared by the two aggregated cells of the highest resolution. In the resul-
ting cell the distribution of property values assigned by interpolation in each of
the smaller cells appears in grey.

In the central image the distribution of property values provided by our repre-
sentation can be seen. Among the highest resolution voxels a linear interpolation
is carried out taking into account that the associated property value is located at
its center. In the larger voxel case, a linear interpolation is undertaken if the point
belongs to the interval between the center of the highest resolution voxel and the
border of the larger voxel, that is, if the point falls on the edge (pale blue). The
other end of the interpolation is the center of the corresponding neighbor voxel
of the highest resolution. Whenever the point lies in the inner zone the property
value stored in the voxel of greater size is assigned directly. This zone is shown
in green in the picture.

Figure 2.14 shows the distribution of property values that has a quadtree based
on the cell approach (top) and a quadtree based on the voxel approach (bottom)
with the same number of subvolumes partitioning the space and the same size
for each of them. The lines in light red and dark red represent the distribution
of property values that is provided by the trilinear interpolation (bilinear in the
figure), in case of the cell approach, and zero-order interpolation, in case of the
voxel approach. In Figure 2.15 you can see the distribution of property values
provided by the HRB-Octree.

The main advantage of our representation compared to the cell approach used
in an irregular representation, in relation to the calculation of property value
at a point P , is the absence of the lack of continuity problem in geometric ele-
ments (edges and faces) shared by neighboring cells of different sizes. On the
other hand, the main drawback here is when calculating the property value for a
given point in volume. To carry out this operation, the cell approach permits fast
identification of the cell (O(n log n)) in which the point lies, and how it stores all
eight property values needed to carry out the interpolation in the corresponding
leaf node, the calculation of the property value is immediate. However, our met-
hod only improves on the cell approach when the point is included in the voxel’s
inner zone, as the stored property value is returned directly, without having to
carry out any kind of interpolation. When a point lies in the voxel’s edge, our
method uses much more time to get the property value at the point. Next, we
show a concrete example of the distribution of property values that provides the
cell approach, the voxel approach, and the HRB-Octree using the same similarity
criterion for the octree (See figures 2.17, 2.18, and 2.19 respectively).

Our representation provides a distribution of property values by a continuous
function (C0 continuity) that combines a zero-order interpolation used by the vo-
xel approach and a trilinear interpolation used by the cell approach. Nevertheless,
the trilinear interpolation applied in our representation is free of the inconsistency
problem described above for irregular representations based on the cell approach
and therefore it does not need to elaborate partial solutions to this problem. In
figure 2.19, the picture at the bottom shows the distribution of property values
provided by our representation. The partition of voxels in inner and edge zones
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2.5. Evaluating our representation

appears colored in green and pale blue respectively. Property values that corres-
pond to points lying in inner zones present a plane appearance because they are
assigned by zero-order interpolation. However, the property value of points lying
in edge zones is calculated by trilinear interpolation (bilinear interpolation in the
example shown in the figure) from the values of the neighboring voxels. In this
way, we have the advantage of saving space by applying the concept of homoge-
neous region to a voxel approach and the advantage of obtaining a continuous
function as is achieved in the cell approach. The added advantage is that in our
hybrid approach is not necessary to address explicitly the inconsistency problem
posed by the cell approach on irregular grids.

2.5. Evaluating our representation

This section compares the HRB-Octree to a representation based on the cell
approach applied on a uniform grid, which is the most commonly used (See fi-
gure 2.19). The metric that has been used for the comparison between represen-
tations is set out in the space of property values through a standard measure of
error. The deviation produced when calculating the property value at a point in
space by HRB-Octree is considered with respect to the calculation of the property
value in the same point by the cell approach. To establish the measure of error
we take as the correct value the one provided by the cell approach on every point
and, as the estimated value the one provided by HRB-Octree.

2.5.1. Preliminary study of interpolation error

This subsection discusses the shape of the linear interpolation with the aim of
carrying out a glance at the error produced in calculating the property value in
HRB-Octree, with respect to calculating the property value on the cell grid (See
equation 2.5). The analysis is carried out taking into account how the similarity
criterion used in the operation of adding voxels (See inequalty 2.6) affects the
linear interpolation, as well as the allocation of the average value of the voxels
that make up the new voxel.

It is noted that the higher the average difference between pairs of property
values is, the greater the error produced by using the HRB-Octree is, this error
depends on the final value assigned to the new homogeneous region. Therefo-
re, the greater the distance between property values allowed by the similarity
criterion is, the higher the error obtained. It should be borne in mind that in
HRB-Octree, the homogeneous regions (voxels) of different size are represented
by its leaf nodes (See figure 2.20). It is also shown that the HRB-Octree guaran-
tees that linear interpolation remains unchanged regardless of the width of the
interpolation range [xi, xi+1]. This is because the linear interpolation is performed
only on the voxels’ edges (See figure 2.21).

Therefore, we can conclude that the error in calculating property values in
the HRB-Octree, with respect to a uniform grid of cells, depends solely on the
difference in the property values of the highest resolution voxels with respect to
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CHAPTER 2. Multiresolution Representation of Volumes

the property value allocated to the new lower resolution voxel that results from
an aggregation operation.

2.5.2. Error metric

This subsection develops an analytical error metric based on the above observa-
tions (See equations 2.17 and 2.18). This metric provides an error function, E(x),
which represents the error obtained in calculating the property value of any point
lying in the volume represented by the HRB-Octree, with respect to the value
calculated for this point using the uniform grid of cells. Figures 2.22 and 2.23
illustrate the parts that define the error function E(x) graphically.

2.6. Conclusions

Fixed-resolution and variable-resolution discrete representations have been pre-
sented using the two main approaches, voxel and cell, which are based on the type
of interpolation function used by the representation. In addition, the advantages
and disadvantages of using each approach in variable-resolution representations
have been studied, emphasizing the possibility of saving space for storing samples
and the continuity provided by the interpolation function in each approach.

A representation based on the voxels approach, the HRB-Octree, has been pre-
sented which helps to reduce storage space using the concept of homogeneous
region, whose idea underlies the use of the spatial coherence among property va-
lues of the samples. This representation resolves the problem of lack of continuity
that presents the classic voxels approach by means of the establishment of a par-
tition in the voxels space, dividing it into two areas: inner zone and edges. This
new partition uses an interpolation function that is different for each type of area,
achieving continuity C0 among areas and, therefore, in the voxels partition.

The error produced by our representation with respect to a representation of
fixed resolution based on the cell approach has been studied. It has been shown
such error in calculating the property value of a point P solely depends on the
error tolerance chosen for the property values domain. Based on this result, an
analytical expression of the error has been provided.
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CHAPTER 3

Visualization by Contouring in
Discrete Volume Representations

This chapter presents a method for displaying discrete volume representations
using the strategy of isosurface extraction (contouring). Contouring requires a
partition of cells that occupy the entire space represented in the volume mo-
del. Our aim is to visualize the representation based on homogeneous regions by
contouring a grid of cells dual to the voxels grid represented in the octree.

The first section presents the key concepts about this type of strategy for vo-
lume visualization. Section 3.2 shows a series of concepts related to tiles on the
plane and space that will enable us to define clearly the type of cell partition that
we propose. The next section (3.3) briefly describes how the isosurface extraction
on discrete representations may be addressed, for both fixed and variable reso-
lution which use the two main approaches: voxel and cell (already mentioned in
the previous chapter). In the subsection of previous works some of the works that
have addressed the problem of extracting isosuperficies in multiresolution discre-
te representations are discussed. Particular emphasis is given to the problem of
cracks (holes on the extracted isosurface) that may appear in the approximation
of the isosurface and the various techniques used for their solution. At the end,
this section shows the partition of cells that we propose in order to carry out the
extraction.

Section 3.4 presents our proposed hybrid representation: the Octree with an
Implicitly Defined Dual Grid (IDDG-Octree). This representation adds the topo-
logy of a dual grid of cells to the HRB-Octree which permits to make contouring
avoiding the possibility of getting holes in the extracted isosurface. Section 3.5
shows the process of extracting isosurfaces from our representation. Finally, sec-
tions 3.6 and 3.7 evaluate the representation with respect to space and processing
time requirements and the quality of the extracted isosurface.

The bulk of the work developed in this chapter was published in [LTV08].
Therefore, we attach to this guide the full text of this paper. However, sections
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corresponding to the evaluation of results will be commented upon here in greater
detail because, for reasons of space, they did not appear as detailed in the article.
Section 3.6 shows the results for IDDG-Octree with respect to storage space
and processing time required. Section 3.7 evaluates the quality of the extracted
isosurface.

3.1. Visualization by contouring

This section describes the problem of extracting isosurfaces applied to discrete
volume representations, presenting a possible definition of isosurface for such
representations which is based on our definition of discrete volume representation.

3.2. Preliminary concepts

This section defines some concepts that will be used in the rest of the chapter
and explains their relationship with the two main approaches used for representing
volumes discretely: voxel and cell.

3.3. Contouring in voxel and cell approaches

This section explores the possibilities, advantages and disadvantages associated
with the extraction of isosurfaces from representations based on each approach,
taking into account the previous definitions and the necessary discretization of
space. Firstly we consider both approaches in the case of fixed-resolution repre-
sentations, and thereafter, we consider the multiresolution representations, along
with our representation (HRB-Octree).

Finally, we comment on the preliminary work associated with contouring multi-
resolution representations posing the problem of holes in the extracted isosurface
and placing special emphasis on methods of solution based on the concept of
duality.

3.4. Homogeneous regions Octree with Implicitly Defined
Dual Grid: IDDG-Octree

Focusing on isosurface extraction, a rough method is established that allows
the calculation of isosurface points without having to pay the costs associated
with maintaining an additional structure of cells. To do this a 3-D mosaic of
cells dual to the 3D mosaic defined by the homogeneous regions (voxels) repre-
sented by the octree’s leaf nodes is constructed, which will be stored implicitly
in the representation. Consequently, the advantages in terms of space saving and
independence of the neighboring homogeneous regions in the voxel approach are
maintained, and at the same time, we avoid the loss of efficiency in the calcula-
tion of the property value at a point that was a disadvantage of the HRB-Octree.
Figure 3.28 shows an example that illustrates our representation. (See [LTV08]).
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3.5. Isosurface extraction from IDDG-Octree

Our objective is to extract an isosurface, defined by a property value (the
threshold), from our variable-resolution discrete representation. In the represen-
tation we have defined implicitly the cells on which we are going to make the
calculation of the triangles that approximate the isosurface. Firstly, the active
cells are detected by traversing the octree and using the information provided
by the responsibilities assigned to minimal voxels. Secondly, geometric meaning
is attached to the implicitly defined cells based on the adjacent voxels that are
required to produce valid cells. Then a modified Marching Cubes Algorithm is
applied on each of the cells to get the mesh of triangles that approximates to the
isosurface.(See [LTV08]).

3.6. Evaluating the representation

The most important characteristics of a volume representation are its memory
usage and rendering time. The IDDG-Octree uses a hierarchical structure that
can be used inmediately to index the volume (for instance storing the property
interval in the internal nodes). This type of index has been used to accelerate
marching algorithms at the cost of increasing the memory requirement [VT01].
Therefore, we do not want to test the use of the representation as a volume index
(as it is obviously faster than Marching Cubes), but rather test it directly against
the uniform grid with Marching Cubes. Accordingly, we do not make use of the
octree as a spatial index. Our conclusion is that the behaviour of the proposed
representation is similar to that of a uniform grid, both in terms of the space used
and isosurface extraction.

We tested the method taking as the input grids generated from synthetic models
and various volumetric data sets. For the synthetic models we used two different
sampling approaches to determine the simplification ratio obtained by our octree.
The first approach generates samples with equal property values within the object,
while the second one produces property values which decrease with increasing
distance from the position where the sample is taken to the centre of the object.
Specifically, the synthetic models that have been used for tests are defined as
follows, according to the strategy of discretization taken:

Let α1 be a function to perform sampling in the binary domain {0, 255}, defined
as follows:

α1(x, y, z) : V ⊂ R
3 7→ {0, 255}

α1(x, y, z) =

{

255 si ri ≤ 1
0 otherwise

(3.1)

Let α2 be a function to perform sampling in the discrete domain [0, 255], defined
as follows:
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α2(x, y, z) : V ⊂ R
3 7→ [0, 255]

α2(x, y, z) =

{

255(1 − ri) si ri ≤ 1
0 otherwise

(3.2)

where V is a cube of length 2 centered on the origin and aligned with axes and
ri is defined as the synthetic model chosen as:

Esfera
r1 =

√

x2 + y2 + z2 (3.3)

Tronco
r2 =

√

x2 + 2yz (3.4)

Silla
r3 = sin(xz) + y + cos(xz) (3.5)

Jarrón
r4 = x sin(x) + y cos(y) + z sin(z) (3.6)

In order to compare the sensitivity of the representation against the size of the
data set, several volumetric representations with different sampling frequencies
were generated using both methods. For the approach that generates samples
in a binary domain, we have chosen a homogeneity criterion based on an equal
property value. In the case of sampling with a discrete domain of property values,
a tolerance error value was used to test the equality among samples. All tests were
carried out on a standard PC with an AMD 64 (2 MHz) processor and 2GB of
RAM memory.

3.6.1. Results

The tables presented below show, from left to right, the first column with
the different resolutions of the models. The next two columns show the number
of internal and leaf nodes of the octree. The following two columns show the
size (in Kbytes) required by the IDDG-Octree and the grid (Rej.). The last column
expresses the percentage of space requiered by our representation with respect to
the uniform grid (IDDG-O/Rej.). The number of internal and leaf nodes of the
octree are shown separately because the space occupied by each type of node is
different. The property value in the regular grid uses 2 bytes while in the octree,
each internal node requires 4 bytes and each leaf node requires 2 bytes for the
property value and 1 byte for storing responsibilities (one it for each possible
responsibility).

Tables 3.1–3.3 show the results for the space occupied by the model (esfera).
The sampling strategy used produces values in the range 0–255. Table 3.1 shows
the results obtained using as similarity criterion an error tolerance in the diffe-
rence between property values ǫ = 0. This is an example that serves to show the
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worst case where low compression is achieved in the initial set of samples as the
similarity criterion chosen is the equality among property values. However, it can
be seen that as the number of samples increases the rate of reduction of requi-
red space improves. Similarly, tables 3.2 and 3.3 show the results for the same
sampling strategy, but using the error tolerances ǫ = 1 and ǫ = 2 respectively.
Obviously, increasing the error tolerance increases the rate of space reduction for
smaller sized sets of samples.

Similarly, the tables 3.4–3.6, 3.7–3.9 and 3.10–3.12 show the results for space
occupied by the models: tronco, silla and jarrón for similarity criteria with
error tolerances ǫ = 0, ǫ = 1 and ǫ = 2 respectively. In the tables we can check
the trend of reducing space requirements as the number of samples increases and
similarity criteria between samples relaxes. The four charts at the top of the
figure 3.36 summarize the percentage of space saving (IDDG-O/Rej.) that the
IDDG-Octree produces with respect to the uniform grid for each of the synthetic
models sampled with the domain 0–255.

Obviously, when applying the binary sampling strategy it yields a higher sim-
plification level. In addition, it is not necessary to consider an error tolerance in
applying the similarity criterion between property values, as they only have two
possible values for the samples, indicating interior and exterior of the object. The
results of applying this strategy to synthetic models are shown in the tables 3.13–
3.16. The chart at the bottom of the figure 3.36 summarizes the percentage of
space saving (IDDG-O/Rej.) that IDDG-Octree obtains with respect to the uni-
form grid for each of the synthetic models sampled with a binary domain.

By using the second sampling strategy, the space requirements of the different
resolutions obtained are considerably lower than those obtained with the first ap-
proach. It is logical to expect this outcome because, when sampling with discrete
domain, data have different property values in the volume of the grid represen-
ting the inside of the object. Obviously, because of our similarity criterion, we
are going to obtain higher rates of space saving as there are more regions with
similar property values and the size of these regions is larger.

The tables presented below show the time results (in seconds) spent in the ma-
jor processings executed in theIDDG-Octree and the grid. Again, we use different
sampling ratios of the synthetic models for both sampling strategies. Specifically,
with respect to IDDG-Octree three columns are presented (from left to right)
showing the time spent in the process of octree simplification (Simplif.), the pro-
cess of generating the dual grid defined implicitly (Rejilla Dual) and the process
of isosurface extraction (Extrac.). With respect to the grid a single column is
shown with the time spent in the process of isosurface extraction (Extrac.).

Tables 3.17–3.19 show the results for processing times spent by the model
(esfera). The sampling strategy used produces values in the range 0–255. Ta-
ble 3.17 shows the results obtained using as similarity criterion an error tolerance
ǫ = 0. Similarly, tables 3.18 and 3.19 show the results for the same sampling stra-
tegy, but using error tolerances ǫ = 1 and ǫ = 2 respectively. As it is shown, our
extraction method spent a greater time than the extraction algorithm applied on
the grid for sampling ratios less than 5123 samples. However, when the error tole-
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rance is increased it can be verified that this time improves substantially. This is
reasonable because increasing error tolerance yields a lower number of voxels and
therefore fewer dual cells, thereby reducing the number of cells to be processed.

Similarly, the tables 3.20–3.22, 3.23–3.25 and 3.26–3.28 show the results for
processing times used by the models: tronco, silla and jarrón for similarity
criteria with error tolerances ǫ = 0, ǫ = 1 and ǫ = 2 respectively. In the tables we
can check the trend of improving the extraction time spent by the IDDG-Octree as
the number of samples increases and similarity criteria between samples relaxes.
The four charts at the top of the figure 3.37 sumarize the time, in seconds, used in
the isosurface extraction (Extracción (s.)) by the IDDG-Octree and the uniform
grid for each of the synthetic models sampled using the domain 0–255.

Obviously, a higher level of simplification is yielded in the octree when applying
the binary sampling. As a result, fewer dual cells are obtained and, therefore, the
extraction time spent by the IDDG-Octree remarkably improved with regard to
the extraction time spent by the grid. The results of applying this strategy to
synthetic models are shown in tables 3.29–3.32. The chart at the bottom of figu-
re 3.37 summarizes the time, in seconds, used in the isosurface extraction (Ex-
tracción (s.)) by IDDG-Octree and the uniform grid for each of the synthetic
models sampled using a binary domain.

As can be seen in the tables presented above, our representation spends extra
time in generating on the fly the geometry of the cells needed to perform the
extraction (without using the octree as a spatial index), with respect to make the
extraction on a uniform grid. However, if the number of cells that it is needed
to process reduces similarly to what happens to the models represented by a set
of 5123 samples (collected in the fifth row of the tables), or the error tolerance
used in the similarity criterion is relaxed, such as occurs in the tables showing
the values of the models silla and jarrón for ǫ = 2 (tables 3.25 and 3.28), then
our representation spent an extraction time lower than the grid. This fact can be
tested for the sampling values 2563 and 5123 in the models discretized using the
binary sampling strategy.

Next, the space requirements and processing times for several examples of vo-
lumetric data sets are analyzed. For this, we use four datasets obtained from the
repository volren (http://www.volren.org). Similarly to the analysis done in
the case of synthetic models presented above, the following tables show the space
required for both representations, uniform grid and IDDG-Octree, and the time
spent in the construction of the simplified octree, in the process of assigning res-
ponsibilities which implicitly defined the dual grid of cells, and in the isosurface
extraction from our representation and the uniform grid.

Specifically, with respect to the storage space required, the tables 3.33–3.35
show the space, in Kbytes, required by theIDDG-Octree (IDDG-O), by the
grid (Rej.) and the percentage of space required by our representation with res-
pect to the uniform grid (IDDG-O/Rej.). Table 3.33 shows the results obtained
using an error tolerance ǫ = 0, and tables 3.34 and 3.35 show the results for error
tolerances ǫ = 1 and ǫ = 2 respectively. The chart on the left side of figure 3.38
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summarizes the percentage of space saving (IDDG-O/Rejilla) that IDDG-Octree
yields with respect to the uniform grid for each dataset.

The tables 3.33–3.35 show that datasets aneurism and bonsai require conside-
rably less storage space in our representation that in the uniform grid. However,
the dataset skull requires a much larger space. The reason for this result is that
the former do not contain noise on the outside of the represented objects, and
therefore the similarity criterion provides very high aggregation rates in this sub-
volume. Despite that, in the case of bonsai there are many high frequency data,
so the octree can not reach simplification rates as high as those obtained in the
aneurism. In the cases of the kind that exemplifies the dataset skull a solution
taking into account more information from the set of samples can be used with
the goal of eliminating noise. If all intervals in the property value domain that
are important to establish thresholds are known, then an initial filtering of the
volume can be carried out.

Tables 3.36–3.38 report the results in relation to the processing time spent (in
seconds). Specifically, with respect to IDDG-Octree three columns are presen-
ted (from left to right) showing the time spent in the process for octree simplifi-
cation (Simplif.), the process of generation of the dual grid defined implicitly (R.
Dual) and the process of isosurface extraction (Extrac.). With respect to the grid
a single column showing the time spent in the process of isosurface extraction (Ex-
trac.) is presented. The chart located on the right side of the figure 3.38 summa-
rizes the time, in seconds, used in the isosurface extraction (Extraction (s.)) in
the IDDG-Octree and the uniform grid for each of the datasets.

With regard to the extraction time from volumetric data sets, it should be
noted a situation similar to that which occurs in the case of synthetic models.
Our representation uses an extra time in the process of isosurface extraction if a
high rate of simplification in the IDDG-Octree is not obtained, as it is the case
with the dataset aneurism. First row of tables 3.33–3.35 shows the space saving
achieved by IDDG-Octree for this dataset, and first row of tables 3.36–3.38 shows
the extraction time employed by our method. In this case, our representation
improves on uniform grid, in terms of space saving, and our extraction method
improves on Marching Cubes algorithm in relation to the time spent in isosurface
extraction.

Figures 3.39 and 3.40 show images generated by our extraction method applied
to the IDDG-Octree and by the Marching Cubes algorithm applied to the uniform
grid. It can be seen examples for each synthetic model using the two sampling
strategies for the same number of samples (1283). Specifically, from left to right,
the first three columns show the images generated by our extraction method
applied to the IDDG-Octree, using the similarity criterion with error tolerances
ǫ = 0, ǫ = 1 and ǫ = 2, respectively. The fourth column shows the result of
applying the Marching Cubes algorithm in the uniform grid. The first row of
the two dedicated to each model shows images solely for the first (ǫ = 0) and
last (grid) columns because it represents the binary sampling, and it makes no
sense other than a tolerance for error ǫ = 0 for the IDDG-Octree.

In figures 3.39 and 3.40 two rows for every synthetic model are shown. The
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first row shows images resulting from binary sampling and the second images
resulting from sampling in the range [0, 255]. All the images located in the first
row of the two which corresponds with each synthetic model presents a “jagged”
effect because their property values belong to the binary domain. This effect is
eliminated when the synthetic object is sampled using different property values,
as it can be seen at the images in the second row. We can see that the images
generated by Marching Cubes (fourth column) and those generated by our method
using the IDDG-Octree with error tolerances ǫ = 0 and ǫ = 1 (first two columns
respectively) are difficult to distinguish visually. However, when an error tolerance
ǫ = 2 (third column) is applied, the differences that the isosurface extracted from
IDDG-Octree present with respect to the one extracted from the uniform grid can
be seen, except in the case of the model silla in which there are no appreciable
differences.

With regard to the tested datasets, figure 3.41 shows a row for each dataset
with a configuration of columns equivalent to the case of synthetic models. In
this case, there are no appreciable differences between the images generated from
IDDG-Octree and those generated from the uniform grid, even with an error
tolerance ǫ = 2 (third column).

3.7. Evaluating the quality of the extracted isosurface

In order to evaluate the goodness of the isosurface estimation we will compare
the results obtained by making the extraction using IDDG-Octree with those
obtained using Marching Cubes on the uniform grid using the same threshold. In
both methods isosurface points are obtained using a cell discretization of space.
The points obtained correspond to the crossing points of the isosurface with the
cell edges whose property values (located at the extremes) fall one above and
another below the threshold chosen.

However, the cells obtained for each type of partition are different, so we can not
compare directly at each of the crossing points obtained, as these will be different.
We have therefore used error measures that take into account the number of
points that are located at a certain distance from their corresponding correct
points located on the isosurface. In other words, the range of the error function
is discretized using subintervals and an error value is calculated for each crossing
point. Using the previous discretizacion the error value allows us to increase a
counter of the number of points falling in the corresponding error interval. At the
end a discrete error distribution is generated which may be used for comparing
the goodness of the estimation produced in each method. Nevertheless, it should
be note that the number of crossing points obtained in each method is different
because it depends on the configuration of cells used in each representation.

The strategy to carry out the comparison is based on having a known function
f(x, y, z) which permits to calculate the property value throughout the volume,
along with the functions F1(x, y, z) and F2(x, y, z) which are the interpolation
functions used by the uniform grid and the IDDG-Octree respectively. To follow
this strategy it is necessary to have a reference analytical object that allows us
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to know the property value for each point simply by evaluating this point in the
analytic expression related to that object. If the same number of samples are
used in the voxelization of the reference object, then a comparison between the
two representations can be established. In order to set the estimation error it is
assumed as the correct value the one provided by the analytical expression at
the point of interest, and as the estimated value the one provided by each of the
extraction methods.

With regard to apply our comparison strategy to volumetric data sets, we have
a drawback because the function f(x, y, z) is not known. To solve this, we consider
that the interpolation function F1(x, y, z) defined on the highest resolution grid
acts like such reference function. The dataset where the extraction is applied
both for the uniform grid and for the IDDG-Octree is obtained by subsampling
the initial set of volumetric data.

3.7.1. Error study

The error produced by IDDG-Octree in estimating f(x, y, z) with regard to
the estimation achieved by the uniform grid is determined by the accumulation
of two errors: an error associated with the property values assigned to the vertices
of the dual cells and an error associated with the edges of these cells. In the first
case, successive aggregation operations cause a loss of information in the property
values domain due to the replacement of all the values of the aggregated voxels
by the average of these values in the resulting voxel . In the second case, the edge
segments where the interpolation really occurs may have an orientation different
to the edges of the uniform grid, and consequently a different length. Figure 3.42
illustrates the idea in a 2-D example. The picture on the left shows the result
of aggregating four voxels of the highest resolution into a larger one, with the
consequent loss of the information related to the voxels’ property values. The
picture on the right shows the dual grid of cells in continuous red stroke and the
cell of the uniform grid in red dashed lines. In addition, the points delimiting the
edge segment where the interpolation is calculated are shown in black. As it can
be seen, these edge segments have an orientation and length distinct to the edges
of the uniform grid.

Both extraction methods use linear interpolation in the crossing edges of the
cells to determine the point on the edge that belongs to the isosurface. Figu-
re 3.43 shows an example that illustrates the elements that can be used to assess
the error produced by the estimation. The figure shows two functions, f(x) and
F (x), representing the real function and the interpolation function respectively
that estimates it. The extraction method allows to find the point that solves the
equation F (x) = ν in the crossing edge. This point is labeled as x0 in the figure.
Moreover, in disposing of the real function that we are estimating, we can calcu-
late the value of the function f(x) at that point evaluating it. The result is the
value ν0 in the figure. However, the point that truly fulfills the equation f(x) = ν

in the interval is xR.
In figure 3.43 the crossing points x0 and xR and the property values ν and

ν0 can be seen. These pairs of values, which are located in the domains E and
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V, respectively, allow to establish two different error metrics. If we relied on the
difference in absolute value between ν and ν0, we can have an indirect measure
of the goodness of estimation by linear interpolation. A greater difference indi-
cates that the function F (x) gives a worse estimation of f(x) at the point x0 for
the isovalue ν. As the difference is smaller, the function F (x) provides a better
estimation of f(x) for the isovalue chosen.

In order to obtain a direct measure of the goodness of the estimation we use
the distance in the space E between the point xR that really fulfills the equation
f(x) = ν and the point x0 estimated by F (x). In this way, the error produced at
the points obtained by the estimation can be determined. However, this approach
poses a problem. The function f(x) is a function easy to evaluate at any point but
difficult for determining the solution for f(x) = ν analytically, except for simple
cases. The solution of the previous equation provides the point xR. In fact, this
is one of the reasons why the discretization of the space and the interpolation at
the edges is used. Therefore, we must find an approximate method for calculating
xR. Next section shows the metric chosen to measure the error directly, that is,
using the distance between x0 and xR in the space E, along with the way to
approximate the value of xR.

3.7.2. Error metric

Figure 3.44 shows the elements necessary to measure the error that occurs when
calculating the isosurface point by linear interpolation with respect to calculating
it directly using the function f(x). The problem lies in the difficulty of solving
the equation f(x) = ν which give us the point xR needed to obtain the error
eν = xR−x0. To solve this problem we relied on the expression 3.14. This formula
allows us to estimate the value of a function f(x) at a point x in an interval, ∆x,
sufficiently close to a point x0 whose value is known, wherever it is possible to
calculate the derivative of the function, f ′(x), at that point.

f(x) ≈ f(x0) + f ′(x0) (x − x0) (3.7)

Clearing the term in the equation that interests us and by substituting va-
lues known yields the following equation that estimates the error produced when
approximating xR by x0:

eν = (xR − x0) ≈
1

f ′(x0)
(ν − ν0) (3.8)

In the 3D case, the gradient of the function, ∇f , at the point X0 is used. The
direction of ∇f is the direction in which the directional derivative has the highest
value and |∇f | is the value of the directional derivative. Therefore, the metric for
the error estimation has the following form:

Eν(X0) = (XR − X0) ≈
1

|∇f(X0)|
(ν − ν0) (3.9)
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where X0 represents the solution to the equation (F (x, y, z) = ν and
ν0 = f(x0, y0, z0) being X0 = (x0, y0, z0). Obviously we are assuming that
there is only one solution at the crossing edges of the cells.

3.7.3. Procedure for applying the metric

With the metric above we obtain an estimation of the error produced in the
calculation of each isosurface point at each crossing edge of a cell in both repre-
sentations: uniform grid and IDDG-Octree. As discussed previously, due to the
difference between the cells of both representations, it is not possible to obtain
the same crossing points in order to make a point to point comparison. Therefore,
the procedure for applying the error metric is based on calculating the error for
all the isosurface points calculated in each of the methods, establishing relative
measurements based on studying the groups of points located at a concrete dis-
tance from the real isosurface, i.e. groups of points which have the same distance
error.

In analogy to the case of the evaluation of the representation, a test bench based
on synthetic models and real volumetric data sets has been established. In the
case of synthetic models the function f(x, y, z) is known, whereas in the case of
volume data sets we use as function f(x, y, z) the trilinear interpolation function
defined on the highest resolution grid. In the latter case, the uniform grid that
is compared to the IDDG-Octree, which is also used for its construction, comes
from a subsampling on the volume data set. The subsampling generates a uniform
grid with half the samples of the original, taking double sampling interval, that
is, one in two consecutive samples are used.

The procedure starts from a reference object in order to establish the compa-
rison, either a synthetic model or a volume data set of the highest resolution,
of which its function of property values distribution f(x, y, z) and its gradient
∇(f(x, y, z)) are known. In the case of synthetic models the object is discretized
to a specific resolution, thereby obtaining a uniform grid. In the case of volume-
tric data these data are subsampled, as explained previously, to obtain a uniform
grid with half the samples.

From the uniform grid a IDDG-Octree is constructed. Next, a threshold is
chosen and the corresponding isosurface is extracted in each of the methods. For
each crossing point the associated error is calculated using the error metric (See
expression 3.16). The sequence of steps we carry out for each point with a crossing
edge is as follows:

1. Obtaining the crossing point with the edge, X0, by linear interpolation.

2. Calculating the value of the function f in such a point, f(x0, y0, z0) = ν0.

3. Calculating the gradient module of f in such a point, |∇f(x0, y0, z0)|.

4. Obtaining the value of the signed distance Eν(X0) = (XR − X0) by means
of equation 3.16.
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In order to obtain measures for comparing the error produced by both isosurface
estimation methods, the absolute distance from the point estimated to the correct
point is considered. In addition, we use serveral intervals to discretize the error
function domain with a fixed precision. The error in each crossing point produces
the increase of a counter representing the number of points falling in a given
interval. Ensuring that every error produced in all crossing points belongs to one
of these intervals, then an error distribution is obtained in which each interval, in
fact its related counter, contains the number of points that are at a distance from
the isosurface, particularly at a distance between the extrema of such interval.
This type of error distribution, obtained for each of the two representations,
allows us to establish comparisons between both of them, resolving the problem
in which the crossing points do not coincide and the number of crossing points
obtained in each representation is different. To establish the comparisons the
relative frequency distribution of error for each extraction process is used together
with the derived curves of relative frequency distribution of error.

With the aim of having a visual representation of the error behavior a linear
color transfer function has been constructed which provides a color related to each
crossing point in terms of the error produced in its calculation. The distances
provided by the equation 3.16 are the domain of the transfer function and its
range is in the domain of the RGB color model. The transfer function is defined
on the basis of two complementary color transfer functions that range in the
channels R (red) and B (blue) of the color model. We have called these functions
R(x) and B(x) respectively. Figure 3.45 shows the shape of these functions. The
color transfer function provides a fixed value, K, for the channel G of the RGB
color model. Formally, the color transfer function, C(x) is defined as follows:

C(x) : R −→ R x R x R

x (R(x), K, B(x))

where

R(x) = RMIN +
RMAX − RMIN

MAX
x

B(x) = BMAX +
BMIN − BMAX

MAX
x

being [RMIN , RMAX ] the color interval used in the R channel and [BMIN , BMAX ]
the color interval used in the B channel.

The color gradient that provides the transfer function ranges from blue to red.
The blue value matches the case in which the error produced is zero, i.e. the dis-
tance between the estimated crossing point and the real point on the isosurface
is 0. The red value coincides with the largest permitted error in each model, as
when the estimated isosurface has been moved towards the inner space delimi-
ted by the real isosurface, +MAX, as in the opposite case when the estimated
isosurface has been moved towards outer spade, −MAX. Figure 3.46 shows the
color gradient and the error values that bound the domain of error.
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3.7.4. Results

In order to test the isosurface extraction error produced by IDDG-Octree and
the uniform grid both synthetic and real volume data sets models have been used.
The error range (distances to the correct isosurface) which has been considered
is [0, 3] and the accuracy in the discretization of this interval is 0,001. Therefore,
the number of subintervals in which the domain of error considered is subdivided
is 3000. All points whose error falls above the value 3 are accumulated apart.
With regard to the color transfer function C(x) the following parameters have
been chosen: RMIN = 0,1, RMAX = 0,9, BMIN = 0,1, BMAX = 0,9 y K = 0,1.

Firstly, the comparison between representations is established using the synt-
hetic models. Each synthetic model is discretized by a resolution of 1283 samples
using the sampling method that provides discrete values in the domain [0, 255],
presented in section 3.6. From the discretizations the uniform grid representation
is constructed and, from it, the IDDG-Octree is constructed. Following, the iso-
surface is extracted using a threshold value of 60 and the value obtained for all
crossing points is accumulated in its corresponding error subinterval of the error
function domain (distances). This is carried out for both representations. In this
way, the absolute frequency distribution of error F is generated.

Tables 3.39–3.42 show the error results obtained for each tested synthetic mo-
del. From left to right, the first column shows the error subinterval (Int.), which
accumulates the number of points that are located at the indicated distance from
the reference model. The interval is represented by a single numerical value, for
example 0,001, indicating that the number of associated points is included in
the interval (0,000, 0,001]. The following columns show the sets of error results
obtained for the IDDG-Octree, using three similarity criteria with different error
tolerances ǫ = 0, ǫ = 1 and ǫ = 2 respectively, and for the uniform grid. Each set
of results is shown in three columns. The first one shows the absolute frequency
of error, F i, the second indicates the relative frequency of error, f i, and the third
shows the accumulated relative frequency of error, f i(x). Depending on the set
of associated results, the index i states:

i = o, j. The measure F i or f i or f i(x) refers to the IDDG-Octree (o) which
has been constructed using an error tolerance ǫ = j for j = 0, 1, 2.

i = r. The measure F i or f i or f i(x) refers to the uniform grid (r).

Figures 3.47–3.50 show visually the error produced by the IDDG-Octree and the
uniform grid in three different ways. At the top, the first three columns show the
images obtained by our extraction method applied in the IDDG-Octree with error
tolerances ǫ = 0, ǫ = 1 and ǫ = 2 respectively. The fourth column shows the image
obtained by applying Marching Cubes in the uniform grid. In the middle, beneath
each image a chart representing its histogram of relative frequencies is displayed.
In the histogram’s X axis we indicate the numerical values corresponding to the
first and last error subinterval in which there is at least a point included. Finally,
at the bottom the figure shows a graph containing the four frequency distribution
curves obtained in each extraction process. In this case, the numerical values listed
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in the X axis indicate the subinterval in which the distribution curve(s) reach(es)
the value 1. It should be noted that some graphics do not display the four curves
because they have the same shape and they overlap each other. For the benefit of
understanding the charts, it has become match the color of the relative frequency
distribution curve of error of each image with the color of their related histogram.

For reasons of space in the paper some tables do not present the full set of
results obtained. However, both the images and the statistical measures of error
which are presented in figures 3.47–3.50 has been made taking into account all
the data obtained for the error domain considered.

In the images at the top of the figures 3.47–3.50 it can be checked visually the
difference between the distinct isosurfaces extracted from the IDDG-Octree and
the uniform grid. The images resulting from contouring on IDDG-Octree using
error tolerances ǫ = 0 and ǫ = 1 are not distinguished from the image produced
from the uniform grid. This permits to infere that the process of simplification of
initial samples has not reduced important information of the extracted isosurface.
However, the images generated from IDDG-Octree using an error tolerance ǫ = 2
differ from those generated from the uniform grid (except in the case of the
model silla). This effect can be seen especially in the upper part of the model
jarrón (See figure 3.50).

The effect in the extracted image, which is produced by the variation of the
error tolerance used by the similarity criterion, can be understood more easily
if we compare the charts that represent the histograms of relative frequencies of
error corresponding with each image (located beneath each of them). In the case of
the model esfera (See figure 3.47), the histogram related to the image generated
for the IDDG-Octree, simplified with error tolerance ǫ = 2, shows that there are
points in the isosurface estimation falling at error subintervals distinct of 0,765.
In this subinterval is where most of the points of the estimatation provided by our
method are falling. It should be noted that in the case of the remaining images
histograms match. This fact can be seen in the chart below which shows the
relative frequency distribution curves of error. The orange curve shows the error
variation of the image that corresponds to the error tolerance ǫ = 2 with respect
to the curves related to the remaining images. It should be noted that because
the curves have the same shape, we only can distinguish the curve (in blue)
corresponding with the image generated from the uniform grid. In the models
tronco (figure 3.48) and silla (figure 3.49) can be checked on these comments
similarly. However, in the case of the model jarrón (figure 3.50) the histograms
seem to have all the same shape. However, it can be seen that the subinterval in
which the error points for the error tolerance ǫ = 2 begin to accumulate (0,639)
is different from the subinterval corresponding with the other images (0,654).

In a manner similar to the synthetic models the comparison between represen-
tations is established using real volumetric data sets. In this case, each dataset
has its own resolution and corresponding property values, but apart from this
fact, the methodology and descriptions of tables and figures are identical to those
made in the case of synthetic models.

Tables 3.43–3.46 show the error results obtained for each of the datasets tested.
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3.8. Conclusions

From left to right, the first column shows the error subinterval (Int.), which
accumulates the number of points that are located at the indicated distance from
the reference model. The following columns show the error results obtained for
the IDDG-Octree, using three similarity criteria with error tolerances ǫ = 0, ǫ = 1
and ǫ = 2 respectively, and for the uniform grid. Each set of results is shown in
three columns. The first one shows the absolute frequency of error, F i, the second
indicates the relative frequency of error, f i, and the third shows the accumulated
relative frequency of error, f i(x). The index i has the same meaning as in the
case of synthetic models.

In the same way that it occurs with the synthetic models tested, figures 3.51–
3.54 show visually the error produced by the IDDG-Octree and the grid in three
different ways. At the top, the first three columns show the images obtained by
our extraction method applied in the IDDG-Octree using error tolerances ǫ = 0,
ǫ = 1 and ǫ = 2 respectively. The fourth column shows the image obtained by
applying Marching Cubes in the uniform grid. In the middle, beneath each image
a chart that represents its relative frequencies histogram is displayed, and at the
bottom a graph showing the four relative frequency distribution curves of error
obtained in each extraction is displayed.

In the images at the top of figures 3.51–3.54 it can be checked visually the
difference between the distinct isosurfaces extracted from IDDG-Octree and the
uniform grid. In figure 3.51, which corresponds with the dataset aneurism, it
can be noted that the areas of error (in red) may not be distinguished between
images easily. The dataset skull (figure 3.54) produces a similar result, although
the number of error areas is greater. However, in the case of the datasets bon-
sai and lobster it can be seen more clearly the difference in the areas of error.
In the dataset bonsai (figure 3.52), the image generated from the uniform grid
does present almost no area of error while the images generated from IDDG-
Octree have well-remarked areas of error, although these areas are distributed
nearly in an identical manner in these images. The same is true for the dataset
lobster (figure 3.53).

The difference between the areas of error that show the images produced from
the IDDG-Octree and the uniform grid can be validated using the charts that
represent the histograms of relative frequencies of error for each image and the
chart showing the error distribution curves.

3.8. Conclusions

An hybrid representation from the voxels and cells approaches, the IDDG-
Octree, has been presented which benefits from the advantages of both. On the
one hand, it saves storage space thanks to the voxels octree and, secondly, through
the implicit representation of cells that are dual to these voxels it permits to make
contouring with very similar results to those obtained by uniform representations,
without paying the cost of maintaining an additional structure.

The concept of minimal voxel has been formalized for the IDDGO-Octree, and
from it, a method that guarantees the automatic generation of the topology as-
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sociated with the dual grid of cells has been developed. This dual grid is stored
implicitly in our representation. In addition, in order to ensure that the cells par-
tition fully covers the volume represented by the octree, a method for wrapping
with dual cells the vertices of voxels that fall on the bounding box of the volume
has been described.

A contouring method that follows the strategy of marching across the dual
cells has been presented. This method takes into account the difference in size of
the voxels that are connected by these cells. For this, the method restricts the
edge segment where interpolation is performed to the edge zone of the voxels.
Proceeding this way, it obtain an isosurface very close to that which is obtained
from uniform representations applied on the same set of input data.

Results have been presented with respect to the storage space required and
the execution time spent by the IDDG-Octree. In addition, an error metric and
a procedure to apply it has been presented which allows us to establish compari-
sons between the quality of the isosurfaces extracted from IDDG-Octree and the
uniform grid.
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CHAPTER 4

Applying IDDG-Octree to
Virtual Sculpture

Progressive improvements in the computer technologies, especially those rela-
ting to specialized graphics hardware, allow us to interactively manipulate virtual
objects in a 3D virtual space. The construction of complex objects in an inter-
active fashion is a complex problem, both from the viewpoint of the domain of
possible objects that the representation must support and from the point of view
of the ease of setting up by the user. Virtual sculpture offers an approach for
creating objects interactively which abstracts the user from the complexity of
the representations, allowing him/her to focus on the interaction with the object
through modeling tools that emulate the sculptor’s real ones.

With the aim to test the response of our representation with regard to interac-
tive manipulation, it has been developed a prototype of application that allows
virtual sculpture. The interaction with the virtual object is carried out using
a haptic device. The first section explores the requirements that should satisfy
both representations of objects and modeling tools that allow the operation on
the objects. The following section explains the process of IDDG-Octree updating
which occurs as a result of applying a tool. To explain the method of updating
proposed it is used the implementation of a tool that allows to remove material
of an object represented by a IDDG-Octree. Finally, results and conclusions are
presented.

4.1. Introduction

This section shows some studies that have addressed the virtual sculpture me-
taphor. Then, there are the design requirements that must be considered in a
representation that allows the virtual sculpture: modification of the model with
interactive response times; multiresolution representation to save space when the
representation is updated through the use of sculpture tools, which may have
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different shapes and sizes; and hiding the complexity of the representation to
the application user. At the end of the section it is proposed a definition for a
sculpture tool based on a volume that determines its shape and a field that de-
termines how it affects to the voxels included in the volume of the tool when it is
applied. Additionally, the tools can enable to change its orientation in addition
to its position.

4.2. Virtual sculpture using IDDG-Octree

This section shows the method that has been developed to apply IDDG-Octree
to virtual sculpture, allowing its updating in interactive time. The application
of modeling operations causes the aggregation or subdivision of voxels in IDDG-
Octree, and therefore the necessary modification of the topology of the part of the
dual grid of cells affected by the changes, along with the generation of the new
portion of associated isosuperficie. Our representation allows that the determina-
tion of the operation scope, modification of the corresponding portion of the dual
grid , if any, and the extraction of the associated isosurface be done in interactive
time. In this way, our representation remains hidden for the user ((s)he percei-
ves the isosurface as the unique virtual model on which to work) and allows the
interactive response, both fundamental requirements of the technique of virtual
sculpture.

4.2.1. Modeling operations

Subsection shows our definition of a tool for virtual sculpture and the choice of
an sphere defined implicitly for its implementation in the prototype. The sphere
may vary in size and the field function follows a uniform distribution of material,
considering the center of the sphere as the point of greatest density, decreasing
the value of density as we approach to its border. The new property value that
provides the field function for a voxel included in the scope of the tool takes into
account the relative position of this voxel from the center of the field, as well as
its current property value. This discrete allocation of property values to voxels
causes aliasing effects in the object being modeled. However, our local-updating
method is independent of the field function used, so it is possible to use other
functions based on kernels to avoid this effect.

To identify on which part of the isosuperficie is a tool being applied and when
the tool must not cross the isosuperficie (which is the only representation of the
object from the user’s point of view) it has been used an approximate method of
detecting inclusion in voxels. The isosurface is calculated from the cells that are
implicitly defined in the representation. However, these cells have no adjacency
information associated. On the other hand, the octree allows a rapid testing of the
voxels that are included in the tool. Our solution is to detect voxels included in
the tool and check if they have associated cells that are crossed by the isosurface.
When detected, the tool can not move towards the interior of the object until
its succesive application causes the lack of isosurface in those cells. Although the
solution is approximate and it is not detected directly the collision of the tool
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with the geometry associated to the isosurface, the effect is hardly distinguishable
by the user, yet allows dramatically increase the efficiency of the calculation (See
figure 4.1).

Because we use a haptic device with force feedback to carry out the interaction
on our model, it is necessary to determine when it starts to provoke the res-
ponse in force. This response is carried out as soon as our approximate method
detects a collision. The response in force uses functions provided by the library
H3DAPI [H3d] who simply follow the Hook law.

4.2.2. Operation for removing material

Subsection describes our method for updating IDDG-Octree using as an exam-
ple a tool for removing material with a spherical shape. The application of the
tool causes, apart from the change in property values, a series of aggregations
and subdivisions in the voxels that make up our representation.

4.2.3. Updating the geometry for visualization

Subsection describes the OpenGL extension named Vertex Buffer Ob-
jects (VBO) and shows how this mechanism has been used for excluding the
invalid geometry, which occurs as a result of the change in property values asso-
ciated to the cells’ vertices and/or as a consequence of the topological changes
of voxels, and for displaying the new geometry that result from these changes.
Changes occur in applying the sculpture tools on IDDG-Octree.

During the initial process of extracting the entire isosuperficie, the VBO stores
sequentially the geometry extracted for each active cell. The final state of the
VBO after this extraction process is depicted in the image above of the figure 4.3.
This approach follows the classic technique for allocating free space from a pool.
However, whenever a tool is applied to our representation are produced changes in
the geometry of the cells as a result of changes in property values of its vertices,
or the cells are no longer valid because one(s) of the voxels that they connect
disappear(s). Therefore, its geometry associated ceases to be valid and the space
taken up in the VBO is considered free space from that moment. In the center
image of figure 4.3 can be observed how, after carrying out the subdivision and/or
aggregation of voxels, the hollow structure presents free space where previously
it was stored geometry of the cells that have finished be valid.

4.3. Results and conclusions

To verify that the method of updating the IDDG-Octree allows an interactive
response when the representation is updated, in addition to generating only the
local geometry within the extent of the tool, a prototype to make sculpture virtual
has been developed. The application allows interaction through a haptic device
that provides six degrees of freedom. Due to the use of this device for interacting
on the model, it is necessary to calculate both the collision of the tool with the
model and a response force to be able to check on progress and feedback the
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device. The calculation of the collision has already been shown and, in terms of
the response in force a library (openhaptics) is used that solves the problem with
a very simple model, but enough to our expectations, based on the Hooke law.

The prototype implements a spherical tool for adding material and another for
removing material represented by an implicit function. No other tools have been
implemented because our goal has been to test the feasibility of using IDDG-
Octree for the interactive operation. However, like all algorithms implemented
are based on obtaining the extent of the tool based on the implicit function, the
application is easily extended to any tool that can be defined in this way. The
prototype has been tested on a standard PC with dual core and 2 GB of RAM.
Concerning to the overall structure of implementation is worth noting that one
processing thread is responsible solely for calculating collisions and response in
force and its execution is carried out in solely in one processor, while another
thread, responsible for updating the structure and generating the new geometry,
is assigned to another processor. The prototype has been tested with models of
up to 2563 samples and results of operations allowed to work in an interactive
fashion.

Figure 4.4 shows the result of applying successive operations of adding material
on a cube. Figure 4.5 shows the result of applying successive operations of remo-
ving material on a cube. Figure 4.6 shows in picture above an intermediate state
for a virtual sculpture session whose final result is shown in the image below.

We can conclude by stating that has been presented a method for updating
the IDDG-Octree that allows the application of this representation to virtual
sculpture. Because the octree permits to determine the voxels that fall under the
extent of a tool, updating the structure is local, and it is only necessary to process
this information. However, as is shown in the chapter 3, IDDG-Octree has the
disadvantage of not having explicitly stored the dual grid of cells, so the cost of
updating the structure remains being the search for neighbors. Because this is
the bottleneck of our representation to obtain good extraction times, appendix A
shows the method for searching neighbors that has been implemented, which aims
to optimize the most of such a search in the octree.
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CHAPTER 5

Conclusions and future work

This last chapter summarizes the major contributions made in this PhD. thesis
along with open lines of research that will provide jobs in the future.

5.1. Main contributions

A representation based on the voxel approach, the HRB-Octree, has been pre-
sented. This representation helps to reduce storage space using the concept of
homogeneous region, whose idea underlies the use of the spatial coherence among
property values of the samples. The HRB-Octree resolves the problem of lack of
continuity that the classic voxel approach presents by means of the establishment
of a partition in the voxels space, dividing it into two areas: inner zone and edges.
This new partition uses an interpolation function that is different for each type of
area, achieving continuity C0 among areas and, therefore, in the voxels partition.

An hybrid representation from the voxels and cells approaches, the IDDG-
Octree, has been presented which benefits from the advantages of both. On the
one hand, it saves storage space thanks to the voxels octree and, secondly, through
the implicit representation of cells that are dual to these voxels it permits to make
contouring with very similar results to those obtained by uniform representations,
without paying the cost of maintaining an additional structure.

The concept of minimal voxel has been formalized for the IDDGO-Octree, and
from it, a method that guarantees the automatic generation of the topology as-
sociated with the dual grid of cells has been developed. This dual grid is stored
implicitly in our representation. In addition, in order to ensure that the cells par-
tition fully covers the volume represented by the octree, a method for wrapping
with dual cells the vertices of voxels that fall on the bounding box of the volume
has been described.

A contouring method that follows the strategy of marching across the dual
cells has been presented. This method takes into account the difference in size of
the voxels that are connected by these cells. For this, the method restricts the
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edge segment where interpolation is performed to the edge zone of the voxels.
Proceeding this way, it obtain an isosurface very close to that which is obtained
from uniform representations applied on the same set of input data.

A method for updating the IDDG-Octree has been presented which allows
the application of this representation to the virtual sculpture. A prototype that
supports virtual sculpture by applying different modeling tools on objects repre-
sented by IDDG-Octree has been developed. This prototype allows carry out of
a process of virtual sculpture with interactive time responses.

5.2. Future works

Throughout the development of this work issues have arisen that have posed
problems which we consider interesting for a more detailed future study. Fo-
llowing, some of these lines of future work are listed:

The similarity criterion used to simplify the octree is based on the spatial
coherence of the property values among the samples included in a volume
region. We intend to use additional information to obtain a higher simpli-
fication rate. The gradient of property is a promising measure that we are
considering.

Our method of contouring from the IDDG-Octree’s dual cells permits that
any contouring algorithm based on the idea of marching across cubical cells
can be applied. This is because we solve the table of cases using the topolo-
gical cells. Our goal is to study the various geometric configurations of dual
cells and to establish a specific table of cases for these cells.

When applying modeling tools on the IDDG-Octree, only operations that
combine property values with the volume have been implemented, i.e. boo-
lean operations. These operations do not retain the volume associated with
the representation. We intend to use the representation to permit the im-
plemetation of deformation tools that preserve the initial volume.
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