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a b s t r a c t

Effortless data storage ‘‘in the cloud’’ is gaining popularity for personal, enterprise and institutional
data backups and synchronisation as well as for highly scalable access from software applications
running on attached compute servers. The data is usually access-protected, encrypted and replicated
depending on the security and scalability needs. Despite the advances in technology, the practical
usefulness and longevity of cloud storage is limited in today’s systems, which severely impacts the
acceptance and adoption rates. Therefore, we introduce a novel cloud storagemanagement systemwhich
optimally combines storage resources from multiple providers so that redundancy, security and other
non-functional properties can be adjusted adequately to the needs of the storage service consumer. The
system covers the entire storage service lifecycle from the consumer perspective. Hence, a definition of
optimality is first contributed which is bound to both the architecture and the lifecycle phases. Next, an
ontology for cloud storage services is presented as a prerequisite for optimality. Furthermore, we present
NubiSave, a user-friendly storage controller implementation with adaptable overhead which runs on and
integrates into typical consumer environments as a central part of an overall storage system. Its optimality
claims are validated in real-world scenarios with several commercial online and cloud storage providers.

© 2012 Elsevier B.V. All rights reserved.
1. Vision: towards resource ubiquity and optimality

Access to software and data anywhere, anytime, on any
device and with any connectivity, has for a long time already
been a crucial topic for researchers and developers in operating
systems, user interfaces and service science. The amount of
managed data is increasing each year, both in large-scale
systems and in smaller and personal environments. Likewise,
more computation is being performed to process the data, and
more communication is performed to distribute the data. This
phenomenon is coupled with a steady increase in computing,
storage and communication resources available, although with
different characteristics: Depending on the nature and purpose of
data, these resources are required with varying intensity, ranging
fromnot at all over a long time to asmuch as possible in short burst
periods.

Several approaches exist to deliver software and data to their
users anywhere and anytime. Cloud computing is a recent term
which conveniently encompasses the notions of ubiquitous on-
demand access, pay-as-you-go utility and seemingly indefinite
elastic scalability. For the software-as-a-service layer, several
platforms exist already as mature and commercialised offerings.
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Deficiencies still exist in the handling of resource-related cloud
services on the infrastructure level, especially storage, computing
and communication services depending directly on the available
hardware resources.

This article, extending and generalising previous research on
optimal cloud storage controllers [1], is contributing to a more
holistic view of entire resource service systems, especially con-
cerning the achievement of optimality for secure, highly per-
forming, cheap, resource-conservative and effortless use thereof.
Among the available resource services, it concentrates on dis-
tributed data storage. Recently, the number and popularity of
online storage services for both personal and enterprise use have
increased significantly. Advances in handling this resource ser-
vice class are of high practical value. Several controllers for dis-
persing information over a redundant array of independent cloud
storage providers (RAIC) have already been described in recent lit-
erature, but none of them is designed for arbitrary user-defined
and system-supported optimality. Hence, the illustration of opti-
mal cloud storage systems is complemented by an extensive vali-
dation through an optimal cloud storage controllerwhich, together
with all experimental data, we provide to the community.

The scope of cloud storage systems is shown in Fig. 1. It assumes
the presence of a storage gateway, which at its core contains a
technical storage controller as the interface for all applications in
need of storage. The criteria for optimality according to the scope
are (1) storage service combinations with optimal characteristics
with respect to the user’s requirements, (2) optimal processing
in the storage controller which should contribute to, rather than
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Fig. 1. Architectural scope of cloud storage systems.

constrain the desired service properties, and (3, not discussed
in this article) an optimal configuration with preferably no user
involvement beside the requirement specification.

The article is structured according to the lifecycle of services in
open service markets. Generally, the offering, preparation, usage
and feedback phases have been proposed in existing literature [2].
The service lifecycle specific to storage services is shown in
Fig. 2. For each phase of relevance to achieving optimality, namely
preparation and usage, the corresponding section describes both
the view of the service provider and the service consumer. The
lifecycle-bound sections are preceded by a cross-cutting section
on modelling the functional and non-functional properties of
storage services, resulting in formal service descriptions which are
essential for achieving consistent optimality in the overall system.
A section on the validation of the results through experiments
with a cloud storage controller implementation and a discussion
of relatedwork follows, before the conclusion and outlook towards
future optimality improvements.

2. Modelling storage services

Services are primarily defined by models whose characteristics
influence all automated service management aspects. The char-
acteristics encompass complexity, maintainability, suitability for
existing service offerings and derived service description quality
metrics such as precision and expressivity. Hence, we propose to
use ontologies for the storage service modes which offer intrin-
sic computational concepts (rules and logics) as well as linkability
with existing vocabularies. Our methodology to capture relevant
cloud storage concepts for both enterprise and private use has been
to perform a survey of existing online and cloud storage providers.
In it, 67 providers have been analysed and the findings have been
formalised by storing them in relational tables and producing the
ontology concepts and instances from those.

The consolidated cloud storage service ontology is visualised in
Fig. 3. It allows for differentiating providers according to technical,
business and legal optimality criteria defined by the user. For
instance, one user might require free-of-charge services without
the need to submit personal data to the provider while another
one insists on ahigh capacity. Furthermore, it conveys optimisation
potential to cloud storage controllers by describing which services
already offer characteristics which would otherwise have to be
achieved on the client side, such as encryption and redundancy.

3. Preparing storage services

This section introduces the conceptual extension of arbitrary or
secure cloud storage arrays towards optimal cloud storage arrays.
By building on the storage service modelling output and service
science concepts for bundling and aggregating services, it describes
the selection, aggregation and configuration of distributed storage.

3.1. Selection and aggregation

Achieving cloud storage optimality requires the service con-
sumers to use and aggregate several storage resources according
to certain patterns and constraints. Hence, the storage service life-
cycle (see Fig. 2) is entered once per consumer from the provider’s
perspective, and once per provider from the consumer’s perspec-
tive.

By leveraging research on non-functional property specifica-
tions from the research communities around Component-Based
System Engineering (CBSE) and the Internet of Services (IoS), the
concept of RAIC can be extended to a weighted combination of ar-
bitrary quality and context properties beyond inexpensiveness [3].
This makes it possible to consider both subjective metrics such as
trust in a storage provider and objective metrics such as cost, of-
fered bandwidth, access restrictions and geographical location. The
weights express weak and strong priorities. Strong priorities can
be used to mandate the inclusion or exclusion of providers with
certain properties, whereas weak priorities are used to sort the re-
maining set of providers. This follows themathematical concept of
Fig. 2. Lifecycle of services in general and of cloud storage services in particular.
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Fig. 3. Simplified entity-relationship diagram of the cloud storage ontology. It consists of domain-independent base ontologies (grey) and the cloud service provider and
storage plan entities and attributes (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
a restricted optimisation functionwith auxiliary constraints.When
all quality parameters match the user’s expectations, the outcome
is a RAOC—a Redundant Array of Optimal Cloud Storage Providers.
This implies the availability of a configurationmechanism to let the
user or an entity on the user’s behalf (such as a system adminis-
trator or autonomous software agent) specify the preferences over
non-functional properties representing the user’s expectations.

To give the configuring entity the choice among otherwise func-
tionally similar providers, a storage service directory or market-
place containing cloud storage service descriptions following the
proposed ontology is assumed to be available. The realised descrip-
tions will be described in the validation section; the marketplace
design and the questions regarding who offers the services and
who maintains the descriptions will be omitted.

In addition to publicly available service descriptions, negoti-
ated service usage contracts ranging from granted logins to so-
phisticated service level agreements will be needed to parametrise
the access of the transport to the storage cloud resources. Meta-
information about where and when to negotiate and configure the
parameters should be taken from the public service description
file, whereas the parameters themselves will be subject to a pri-
vate meta-data store managed by the storage controller.

3.2. Configuration

The choice of suitable storage providers is the task of an admin-
istrator with cloud storage controllers running as network proxies,
but is left to the users for desktop controllers. In both cases, the
controllers require a configuration user interface. It requests pref-
erences over non-functional service properties, generates a goal
description (requirement specification) from them and matches it
Fig. 4. Graphical user interface layout for the provider selection.

against the registry of storage providers. The result list indicates
the ratio of requested and deliverable properties. Matching ser-
vices without an appropriate local transport implementation are
automatically marked as not applicable unless the storage con-
troller provides a facility to dynamically retrieve and integrate
those. The user bookmarks candidate services from the filtered list.
The selection dialogue is shown in Fig. 4.

In the next step, the user then creates the service provider
set of n storage services and configures it accordingly. Typically,
providers require the creation of an account with username and
password as minimum data, or with additional personal data
such as address and credit card information. They might also
require the negotiation of an individual service level agreement
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Fig. 5. Layout for the configuration of the provider set.

unless a stock one is used. In an integrated storage system with
a marketplace, both configuration aspects are required to be
available from an appropriate platform service [4] and be thus
available to the cloud storage controller by querying the service for
negotiated agreements and filled configuration files. This implies
a prior registration of agreement and configuration templates
alongside the service descriptions in the broker or matchmaker in
use. In contrast to the descriptions and templates, the resulting
agreements and configuration files are not public, but are shared
between the matchmaker and the clients which created them.
This implies an initial account setup at the marketplace site.
Hence, for privacy-sensitive setups, running a local instance of the
matchmaker platform services with synchronisation from a global
instance is recommended. Fig. 5 represents the configuration
dialogue.

4. Using storage services

A client-side generic cloud storage controller architecture is
proposed to achieve optimality regarding both the RAOC and
the data handling within the system. The following seven novel
controller characteristics not found in existing approaches are
proposed: Selective redundancy, adaptive scheduling, caching,
streaming, chunking, sessions and distribution.

4.1. Layered architecture for optimal cloud storage

The design of an improved system to make information
dispersion over arrays of optimal cloud storage providers available
to users follows a layered architecture. The controller itself is
considered to be placed between data-processing applications,
such as backup or data sharing software, and the storage cloud.
It consists of an upper interface layer which offers access to the
applications, a middle layer for the logic needed to disperse and
reassemble the data, and a lower layer to transport the dispersed
data to the storage servers. The resulting high-level architecture of
the cloud management system and its association to the storage
service directory is shown in Fig. 6. Each layer will be explained in
greater detail from the bottom to the top in the next paragraphs.

Attached to the cloud storage providers is the transport layer.
Beside delegating the data to the storage interface routines, it
is also responsible for maintaining access efficiency through an
optional cache. Furthermore, if required, a full local write-through
copy of the data can be kept (see Fig. 7).

The data processing pipeline within the preprocessing layer
consists of a single dispersal routine to split (multiplex) data
streams into blocks (fragments), with possibly multiple splitter
implementations to select from, and a set of pipe-combineable
routines which work above the splitter on the file level or below
it directly on the block level, as shown in Fig. 8. For more complex
scenarios, nested loops can be introduced into the pipeline to yield
a hierarchical tree of dispersion and modification modules. All
block-level functions can also be applied to the file level, although
this might be impractical, e.g. when hiding very large files by
steganographic means. The inverse assumption is not necessarily
Fig. 6. Abstract architecture of cloud storage management attached to a storage
service directory.

Fig. 7. Inner architecture of the transport layer.

Fig. 8. Inner architecture of the preprocessing layer.

feasible, since many algorithms such as media adaptation (image
scaling, audio quality reduction) require a full stream of data
or blocks of sizes unknown to generic splitters. The rationale
for offering choice among splitters is the ongoing research and
progress in terms of dispersion efficiency and implementation
efficiency such as multiprocessor support for parallel dispersion
and modification module calls.

The dispersion algorithm honours the previously captured user
requirements regarding performance, availability and security
by applying selective redundancy: None (n = k fragments),
full redundancy through replication or secret sharing schemes
(n = k + kx, x >= 1), or optimal erasure coding through
maximum-distance separable and minimum-bandwidth/-storage
regenerating codes (n = k + m fragments). The resulting n
fragments are uploaded and retrieved either in serial round-robin
order or in parallel. Support for large files requires a special effort.
As an intermediate structure between the file and the fragments,
variable-sized chunks are introduced, which can be retrieved and
updated separately. Each chunk is worked on as soon as the
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Fig. 9. Multiplexing files into chunks and chunks into fragments.

Fig. 10. Inner architecture of the integration layer.

first byte of data arrives at the splitter interface, leading to the
treatment of files as data streams, which is suitable for small
and embedded devices (e.g. running the controller on a wireless
router). Furthermore, sparse files with unused areas such as virtual
machine snapshots need to be handled. Fig. 9 shows the relation
between chunks and fragments.

The metadata about the fragment locations and checksums
would need to be replicated to all devices from which the data in
the storage cloud shall be accessed. Hence, the controller needs to
support sessions by recursively also storing themetadata database
along with the data. In this case, only tiny top-level fragment
metadata needs to be maintained on the client which can easily
be forwarded to other devices or humans (e.g. as an e-mail link).
For the retrieval, first the metadata and then the actual data will
be retrieved on demand.

On top of the preprocessing layer, user-level and system-
level applications make use of the uniform file-level interface for
accessing and manipulating the data. Version control, encryption
and deduplication can be inserted as layers for transparent storage
of multiple versioned, secure and distinct copies of the files,
respectively. At the topmost level, a variety of applications and
application-integrated filesystem protocols exist as entry points
for humans. Fig. 10 shows the integration layer structure.

The proposed layers allow flexible setups and connection
topologies, ranging from single-user desktop backup applications
and automated server backup stores with and without multiple
providers to enterprise-wide distributed cloud storage controller
proxies with high redundancy and throughput. A generalised view
is given in Fig. 11.

5. Validation of an optimal cloud storage controller

In this section, we will present our realisation of the previously
presented concepts, through an implementation called NubiSave.
We start with an overview about the software, proceed with an
explanation of the software architecture andmodular extensibility
thereof which contributes to optimal storage service handling, and
round up with a discussion of the limitations resulting from the
chosen architecture and implementation technologies.
Fig. 11. Generalised topologies of a cloud storage controller.

5.1. Scope of NubiSave

The NubiSave prototype represents a flexible optimal cloud
storage controller. The software is designed to be highly modular
with well-defined connection points between the components.
For instance, there are two configuration user interfaces available,
both sharing the same configuration data. A typical NubiSave
configuration is shown in Fig. 12. It highlights the hierarchically
parallelisable and distributable data storage pipelines as well as
some of the most important user choices regarding the storage
properties. Additionally, there are multiple modules available,
some of them integrated from existing software projects, for the
dispersal, modification and transport of data.

5.2. NubiSave architecture and implementation

The NubiSave architecture consists of three major components,
following the proposed layered approach.

The bottom layer represents a simple data transport abstraction
for each cloud storage protocol. All transport modules implement
the Linux Filesystem in Userspace (FUSE) interface, hence there
is an increasing choice of additional providers available from the
FUSE community, such as davfs2 (WebDAV) and s3fs (Amazon
S3).1 In particular, there is support for configurable SSH-, FTP- or
HTTP-accessible hosts, as shown in Fig. 13. A special transport-
layer component has been created to be able to add cloud
providers easily. The component is named CloudFusion for both
its implementation technology and its ability to fuse cloud
storage with local storage areas which are accessed through
the regular (kernel-space) filesystem for reduced overhead. It is
implemented in Python with pluggable transport modules for the
providers. Transport modules are available for the commercial
service operators SugarSync and DropBox. CloudFusion is based
on the fuse.py module. Its extension is supported through popular
Python frameworks, namely the Nose unit testing framework
and Sphinx-generated documentation. In addition to commercial
storage providers and configurable hosts, the inclusion of local
filesystems enables keeping one ormore of the storage parts under
the direct control of the user, for instance on a USB pen drive.

A caching module is available as well; its activation reduces the
storage latency considerably at the expense of potential versioning
conflicts when accessing the storage area from multiple clients.

For each transport module there is an INI-style configuration
file containing both generic attributes (hostname, access protocol,
user/password, API key) and provider-specific attributes (folder
configuration). In addition, a logging configuration determines the
verbosity and placement of log messages.

1 About 60 FUSE remote filesystem modules are listed at http://sf.net/apps/
mediawiki/fuse/index.php?title=NetworkFileSystems.

http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
http://sf.net/apps/mediawiki/fuse/index.php?title=NetworkFileSystems
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Fig. 12. NubiSave configuration user interface displaying a nested dispersion and transformation module tree.
Fig. 13. Available transport modules within the NubiSave prototype.

The middle layer implements the provider selection, data
splitting and distribution optimisation logic and is paired with the
user configuration. At the core, a switchable splitter module is
responsible for the assembly and disassembly of k data blocks with
m redundant blocks for n = m+ k providers. Two splitters exist in
NubiSave, and one more is scheduled for implementation:

• A simple splitter chops the data blocks without providing
redundancy.

• A Jigsaw Distributed File System (JigDFS)-based splitter imple-
mented in Java is also available. It already contains encryption
routines to enable plausible deniability [5]. The dispersion is
controlled by the algorithms offered by the Java port of the jEra-
sure library but extendedwith fragment checksums so that fail-
ures can be caught early on.

• Finally, a fast splitter is being realised as a Vala library
compiled to executable machine code. Its code contains an
implementation of the Cauchy Reed–Solomon algorithm for
information dispersal [6] adapted from the Cleversafe Java
library.

In addition to the splitter, which performs the 1 : k and k : n
data block transformations, a number of plugins offer functions to
be invoked on each block for an 1 : 1 transformation with varying
additional redundancy as a side effect. An encryption plugin is
available to encrypt and decrypt data blocks with a symmetric
key which is recommended to guarantee confidentiality even
in the event of an attacker getting access to all relevant k
provider storage areas. Another plugin can be activated to hide
the data blocks in media such as photos and songs by applying
steganographic routines from the Stepic tool [7]. This won’t
add any guarantees but is still recommended to lower the risk
of attracting attackers into brute-forcing the decryption in the
absence of the key. A compression plugin reduces the storage
Fig. 14. Processing and available splitter and file/block transformation modules.

requirements transparently by applyingHuffman coding over LZ77
sliding window compression [8], implemented by the deflate
algorithm of gzip. The processing layer subarchitecture is shown
in Fig. 14.

The candidate storage services for the dispersal are determined
from the list of previously user-selected and contract-bound ser-
vices. Their activation follows a round-robin or parallel strategy.
By evaluating the non-functional properties, more sophisticated
scheduling strategies can be implemented in the future via addi-
tional Java classes. Beside this implementation of selective redun-
dancy and adaptive scheduling, NubiSave also implements caching,
streaming, chunking, sessions and distribution as described in the
conceptual section.

The upper layer exports the aggregate view on the cloud
storage into the user’s file system as a virtual partition. It is
again implemented as a userspace filesystem (FUSE) module,
which makes it portable across Linux systems, easy to install and
stackable with other FUSE modules for directory-level encryption,
deduplication or versioning [9]. The filesystem API allows
direct access by all applications with local access semantics,
hence offering a superset of proxy controller approaches. An
advantageous side effect of this design is that users no longer need
to rely on the existence of clients offered by the providers.2

Upon the upper layer, applications make use of the exported
virtual partition to realise data management and versioning, if
not already intrinsic to the specific setup of stacked overlay
file systems. Storage functionality such as backup and sync
represents the highest level in the architecture, as shown in Fig. 15.

2 SugarSync doesn’t offer a native Linux client, DropBox only offers one for read-
only access.
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Fig. 15. Integration use cases for NubiSave.

Furthermore, a configuration tool implemented in Java using the
Swing user interface library is available, and a status notification
applet is a planned addition. Both tools require access to the
configuration file besides the virtual partition.

5.3. Storage provider descriptions

Currently, no uniform service description language exists
which is capable of expressing all technical protocol and non-
technical distinction aspects of heterogeneous storage systems
alike. However, for most information about functional and non-
functional properties, rich description languages including the
semantic Web Services Modelling Language (WSML) [10] and the
Unified Service Description Languages (USDL) [11] are suitable
candidates. We expect that domain-specific vocabulary will be
made available by ongoing research efforts at some point in the
near future.

Service descriptions for the cloud storage providers exist in
the form of WSML ontologies [10] as instances derived from a
storage domain ontology, which in turn uses base ontologies (for
QoS, context, prices and other non-technical properties) from the
WSMO4IoS ontology set [12]. The descriptions are publicly hosted
and maintained by either the providers themselves or by third
parties, which could be a global or domain-specific infrastructure-
as-a-service servicemarketplace as alternative to a locally installed
matchmaker instance containing the WSML service descriptions.
They can also be complemented or substituted with local files
maintained by the user, which is a necessity especially for arbitrary
local storage areas accessed through LANprotocols such as SSH and
WebDAV. An excerpt from the storage provider concepts is shown
in Listing 1.

Listing 1: Storage ontology

wsmlvariant "wsml -flight"
namespace {qos "wsmo4ios:QoSBase.wsml"}
ontology CloudStorage importsOntology "

wsmo4ios:QoSBase.wsml"
nonFunctionalProperties

qosdefinition hasValue "Cloud Storage"
endNonFunctionalProperties
concept MaxDownTime subConceptOf {qos#quality

, qos#LowerBetter}
qos#unit impliesType qos#TimeUnit

concept CloudStorage

It should be noted that many providers offer several service
profiles, for instance to complement a prepaid all-inclusive service
with a free, temporally or spatially limited offering. For example,
SkyDrive offers 25 GB of storage space to all users for free whereas
Amazon S3 offers 5 GB for one year in its free incentive offer for
new users and unlimited space in a successive pay-per-use offer.
Such constellations can be modelled in WSML by using multiple
interfaces within one file and a shared section on general provider
description. Listing 2 shows an instance of the storage ontology for
the SkyDrive service.
Listing 2: Concrete storage description

wsmlvariant "wsml -flight"
namespace {qos "wsmo4ios:QoSBase.wsml"}
webService SkyDrive importsOntology "wsmo4ios

:CloudStorage.wsml"
interface SkyDriveFree importsOntology {Sky}
ontology Sky importsOntology "wsmo4ios:

CloudStorage.wsml"
instance MaxDownTime memberOf {cloud#

MaxDownTime , qos#ServiceSpec}
qos#value hasValue 15
qos#unit hasValue qos#MilliSecond

NubiSave installs descriptions for seven services: Amazon
S3, DropBox, Google Storage, HiDrive, SkyDrive, SugarSync and
4Shared. Furthermore, additional description templates for local
and custom services can be retrieved from a configurable instance
of the ConQomatchmakerwhich hosts theWSMO4IoS ontology set
we made publicly available.3

5.4. Extensibility considerations

While storage provider and transport extensibility is an
inherent feature of the service selection process and the FUSE
module integration, the processing extensibility requires custom
development until the creation of a global module registry
turns this requirement into a choice between installation and
programming. The interface for additional processing modules
consists of two functions, one for reading and one for writing.
Both functions take and return one data block for the 1 : 1
transformation. No assumption is made about the size of the
blocks. There is however the assumption that the functions
are mutually inverse to each other and can be invoked as an
idempotent function pair without noticeable side effects.

The Listing 3 exemplifies the development of an extension
through a Python module for data compression.

Listing 3: NubiSave extension module for data compression

from util import linux
import tempfile
def decode(data):

open("gzipfs.gz", "w").write(data)
return linux.pipe_with_input_file([’gunzip

-c $IN’], "gzipfs.gz")
def encode(data , path):

open("gzipfs.gz", "w").write(data)
return linux.pipe_with_input_file([’gzip -

cf9 $IN’], "gzipfs.gz")

5.5. Remaining limitations of NubiSave

Compared to the analysis of limitations found in existing
approaches, NubiSave shows clear advantages through its flexible
architecture and focus on optimality. The prototype however
reveals some remaining limitations to which solutions are out of
scope for this work. We list the remaining issues together with
medium-term suggestions for overcoming them in future work.

Static provider configuration. While in most use cases a static
configuration of storage providers is a sensible choice, future

3 WSMLontologies for cloud storage: http://serviceplatform.org/spec/wsmo4ios/.

http://serviceplatform.org/spec/wsmo4ios/
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needs for safely dispersed long-term storage require a zero-
maintenance addition of new providers. This is especially true
for anticipated or actual failures of storage providers which could
be masked by allocating new storage areas and rebuilding the
array ahead of time. We assume that the most suitable solution is
the configuration of one or multiple directory services with user-
recommended or otherwise trusted dynamic additions aligned
with the preferences on non-functional properties configured in
NubiSave. We envision the uptake of spot markets for cloud
resource and utility services and just-in-time clouds over low-
scale resources which increases the orientation of offerings along
consumer preferences [13].

Manual provider sign-up. In addition to having to search and add
providers to the configuration, the user is required to manually
create accounts for them in an out-of-band process, for instance
through sign-up at their webpages. We assume that automated
sign-up wizards can be developed and used when not prohibited
by the terms of service.

Single-user operation. Currently, the use cases for NubiSave
evolve around single-user (albeit multi-device) operation, espe-
cially backup. The addition ofmulti-user capabilitieswith selective
sharing would need advanced asymmetric key exchange methods
or entirely different cryptographic techniques. The use of homo-
morphic encryption, as proposed in a policy-based non-dispersing
RAIC controller [14], appears to be the most sensible concept for
sharing dispersed data.

5.6. Performance measurements and analysis

The evaluation of the NubiSave prototype focuses on the
quantitative results from performance measurements, leaving
formal correctness considerations (beyond random inspection)
and usability tests for future work. Nevertheless, NubiSave has
been in use by us for several talks and presentations already in
which the slides were dynamically retrieved from cloud storage
services found through a spot market, confirming the practical
usefulness of the tool.

The overall performance is influenced by many factors. Four
important contributors to thismetric are the degree of redundancy
(m = 0 to m = 2k), the throughput of the splitter module
as determined by parallel invocation, the use of the cache (for
both metadata and files), and the maximum achievable network
throughput as determined by the choice of distribution of storage
providers. In practice, though, the outbound network connection
will almost always be the limiting factor for desktop users due to it
being low-bandwidth, relative to the high-bandwidth computing
centre connections used by most commercial and institutional
storage providers. The test setup consisted of a virtual Ubuntu
Maverick 64 bit machine with 2.9 GB of RAM using 2 Intel Core
i5 760 processors with 2.80 GHz frequency each, running on
VirtualBox 4.0.8.

The performance of the splitter has been measured with de-
activated cache for both write and consecutive read performance.
The results are visualised in the diagrams 16 and 17, respectively.
As expected, the splitting process performs better for larger block
sizes.

In a full-redundancy experimental setup consisting of k = 3
blocks over n = 6 storage clouds (1 × Local, 1 × SugarSync, 4 ×

DropBox) with caching enabled, the maximum used bandwidth
reached 4111.68 kB/s, hinting at a per-account throttling rather
than a per-connection one for the DropBox storage. In a minimal-
redundancy setup of k = 5 blocks for the same providers, which
works significantly faster at the cost of providing less availability,
further distinguishing differences can be seen depending on the
use of the cache.
Fig. 16. Splitter write performance.

Fig. 17. Splitter read performance.

Fig. 18. Minimal-redundancy transport write performance without cache.

Fig. 19. Minimal-redundancy transport read performance without cache.

Write and consecutive read performance are visualised for both
disabled cache (Figs. 18 and 19) and enabled triple-cache (Figs. 20
and 21). The results suggest that future research is needed to
find the best combinations of 1 : k parallel splitting, k : n
block mappings, n : m logical to physical provider mappings and
intelligent use of caching.
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Table 1
Measurable side effects of using cloud storage arrays.

Operation Size (MB) Time (s) CPU/avg (load) CPU/max (load) Mem/avg (MB) Mem/max (MB) Net/avg (kB/s) Net/sum (kB/s)

Write-sparse 1000 39.76 0.7 1.0 23,184 24,708 551.8 37,526
Read-sparse 1000 25.26 0.8 0.8 24,847 24,889 290.5 22,079
Write-mb 1 0.9 1.3 25,816 27,583 340.3 37,439
Read-mb 1 1.2 1.3 27,395 27,458 345.5 22,113
Append 0 1.2 1.2 27,398 27,398 55.8 1,675
Table 2
Effects of using the streaming mode.

Operation Size (MB) Time (s) CPU/avg (load) CPU/max (load) Mem/avg (MB) Mem/max (MB) Net/avg (kB/s) Net/sum (kB/s)

Write 1 0.29 0.3 0.3 73,801 73,801 102.76 4,212.95
Write 10 1.67 0.35 0.4 74,822 74,823 521.99 21,401.6
Write 100 20.02 0.69 0.9 74,830.6 74,833 2.99 449.83
Write 1000 286.87 2.83 4.6 535,762 536,964 0.084 24.57

Stream 1 0.39 1.1 1.1 38,112 38,112 78.04 3,277.65
Stream 10 24.51 1.39 1.4 38,918.2 41,322 877.33 31,583.9
Stream 100 217.48 1.93 2.4 39,467.1 41,498 1343.96 309,111
Stream 1000 1955.40 4.88 6.5 38,238.9 43,430 1887.2 3,702,690
Fig. 20. Minimal-redundancy transport write performance with cache.

Fig. 21. Minimal-redundancy transport read performance with cache.

A second analysis has been performed to measure the side
effects of using cloud storage arrays. The scenario for this analysis
consists of an over-full-redundancy (200%) configuration for k =

1 blocks over n = 3 storage clouds (T -Online, Strato, Wuala).
The Table 1 contains the side effects values for the following
operations: Writing a sparse file of 1000 MB with 1 byte content;
reading this very file; writing 1 MB in the middle of this file;
reading this very 1 MB block; and appending 15 bytes to the file.

A third analysis confirms the memory saving effect when
using the streaming mode for writing files to the backend storage
providers as soon as a reasonable sized chunk is available in the
FUSE layer. Table 2 shows the effect for continuously written files
of varying sizes. The excessive use of memory and the activation of
swap space are alleviated when not buffering all data but instead
using the streaming support.

Due to space constraints, only selected statistics are included
here, excluding further aspects such as re-write/re-read rounds.
We offer our experiment recipes, environment description, input
data, data generation scripts and comparative output numbers at
a public research result comparison site to encourage authors of
dispersing RAIC/RAOC systems to produce corresponding statistics
and graphs.4

6. Related work

Over two decades ago, the introduction of Redundant Arrays of
Inexpensive Disks (RAID) made the case to combine several local
disks inwayswhich balance cost, data safety andperformance [15].
The RAID levels allow for mirroring data on disks or partitions
of identical size, striping physical disks independent of their size
into a logical one, or a combination thereof with an optional disk
for storing checksums. Later, this concept was extended to the
combination of network block devices across servers [16]. This
research focused more on highly-available storage and therefore
on mirroring techniques. Both local and network RAID setups still
assume experienced users or administrators for a proper setup and
maintenance in case of disk failures.

Since approximately the appearance of network storage
redundancy, personal online storage has been increasingly offered
by commercial providers, often backed by RAID storage at the
provider’s discretion. Typically, a proprietary web access or
standardised protocols such as WebDAV and a storage area of
fixed size have been included in the offers. More recently, cloud
computing has brought its own flavour, called cloud storage. In
this model, the storage area increases on demand and its usage
is billed accordingly. In addition, the concern of high availability
is covered by many of these offers by providing redundancy
over geographically distributed data centres. Furthermore, new
protocols based on Web Services have been emerging to ensure
that only high-level file access is possible as opposed to low-level
filesystem or partition access. Setting up a RAID over these storage
providers as network block devices is hence not possible.

A disadvantage of cloud storage from a single provider is
that despite the guaranteed high availability, the operation and

4 Research result comparison datasets are shared at http://areca.co/?q=
cloudstorage.

http://areca.co/?q=cloudstorage
http://areca.co/?q=cloudstorage
http://areca.co/?q=cloudstorage
http://areca.co/?q=cloudstorage
http://areca.co/?q=cloudstorage


J. Spillner et al. / Future Generation Computer Systems 29 (2013) 1062–1072 1071
organisation of the storage area is still subject to the provider’s
policies. For example, despite claims to use RAID, total data losses
occurred in the past.5 Despite claims to protect the access to the
data, total data losses might have occurred in the presence of
an attacker.6 These issues represent both a trust and acceptance
problem as well as a potential safety problem.

Systems for dispersing information over an array of cloud
storage providers have thus been suggested as RAIC systems in
analogy to RAID for local disks. Similar to how RAID works, there
is a software controller (independent from the storage providers)
with varying placement and redundancy strategies, and there
are a variety of RAIC levels depending on the requirements of
the user. There are filesystems such as CORNFS [17] which store
their contents redundantly on the file-level into multiple storage
providers, following a RAID-1 (mirroring) approach. They protect
against data loss, but not against full access with subsequent
decryption attempts. Therefore, partially replicated data blocks are
the preferred redundancy approach. The redundancy is achieved
by executing information dispersal algorithms (IDA), sometimes
colloquially referred to as obfuscation algorithms, which build
on the theory of secret sharing [18]. Well-known IDAs are (in
increasing order of efficiency) Cauchy Reed–Solomon [6], Row-
Diagonal Parity or RAID-6 Liberation Codes [19].

One RAIC information dispersal system has recently been
proposed for use within enterprises [20]. It runs as a central
proxy connected to several cloud storage providers, and offers
transparent integrationwith enterprise client systems through the
common remote filesystemprotocol CIFS. The dispersal algorithms
encompass Blaum–Roth and Liberation coding implemented by
the jErasure library [21], and encryption of the resulting blocks is
performed by an AES algorithm implemented by the Bouncy Castle
library. Further RAIC prototypes have been suggested for resilience
against byzantine failures [22] and as a protection against storage
media theft [23].

Beyond the RAIC systems, a RAOC system which considers
provider characteristics has also been implemented before. This
system has been implemented and evaluated as a web portal [24].
It disperses its data through the Liberation algorithm. The
dispersed data is however not subject to flexible modification.
Furthermore, the actual selection of optimal storage providers
remains unclear.

The presented approaches spread all of their data across remote
cloud storage providers, while others retain one (relatively small)
part on the client side, for instance on a removable device.
Likewise, most approaches use erasure codes which resembles the
RAIC-5 setup, as opposed to simple RAIC-0/1 setups.

However, despite representing a major step forward with
increasing potential for widespread use and commercialisation,7
there are still shortcomings in the currently available information-
dispersing RAIC and RAOC systems. They implement a fixed set
of algorithms, functionality and topology without configurable
extensibility. They typically don’t take arbitrary non-functional
properties into account when selecting a storage provider.
Furthermore, they don’t support a semi-automatic inclusion of
new providers into the storage pool and instead still require a
manual sign-up with potential providers. Finally, they don’t yet
provide an easy-to-use interface to desktop users, who are one of
the biggest target groups for cloud computing offerings.

5 The Amazon EC2 service irreversibly lost customer data in a widely publicised
incident on April 21, 2011.
6 TheDropbox service accountswere publicly accessible for several hours on June

21, 2011.
7 Commercially available dispersing RAIC offerings include the Fraunhofer

FOKUS/eGovCD application TrustedSafe and the Academic dsNet initiative from
Cleversafe.
7. Conclusion

The article has presented a systematic approach for achieving
optimality in cloud storage services along the provider’s and con-
sumer’s iterations of the service lifecycle. Its contributions over
existing works are a structural definition of storage systems and
storage optimality, a storage service ontology as prerequisite for
optimally aggregated services, and an optimality-conscious cloud
storage controller architecture. Building upon our analysis of ex-
isting distributed cloud storage techniques and their weaknesses,
we have hence created a more generic and extensible architecture
which serves as blueprint for building optimal cloud storage con-
trollers encompassing a superset of the most important existing
features. Our prototypeNubiSave,which is freely available,8 imple-
mentsmost of these RAOC concepts and encourages researchers to
overcome the remaining limitations by following our suggestions.

For the future, we plan to integrate NubiSave with popular
web-based cloud storage frontends to achieve a critical mass
of actual users. Furthermore, we plan to explore distributed
cloud storage ecosystems including resource service registration
markets, community-driven resource sharing and autonomous
selection and configuration agents. This will lead to a detailed
analysis of the offering and feedback phases and complete the
storage service lifecycle.
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