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Abstract—This contribution proposes a genetic learning pro-
cess for designing the knowledge base of Fuzzy Rule-Based classi-
fication Systems (FRCBSs), that will be used as binary classifiers
in a One-vs-One decomposition for multi-class problems.

A Genetic Algorithm is designed to adapt the number of
fuzzy labels per variable for each classifier in order to improve
the accuracy rate of a multi-class classifier. The genetic learning
process evolves granularity levels and needs a fuzzy rules gen-
eration method for generating the whole knowledge base of the
FRBCS.

Several data-sets from UCI repository are used in the exper-
imental study and we compare our proposal with the standard
way to design FRBCS using the rule generation method chosen
with and without One-vs-One decomposition.

I. INTRODUCTION

Classification problems with more than two classes (multi-
class problems) are known to present more difficulties than
binary-class problems. One robust solution to cope with the
former problem is to use a decomposition approach[1][2]. Its
main strategy is to reduce the multi-class problem to several
binary-class problems[3], where the One-vs-One (OVO) tech-
nique is widely used[21]. This method divides the original
problem by confronting all pairs of classes against them. Then,
an indepedent classifier is built for each pair of classes and
it is necessary to combine the outputs of these classifiers to
obtain the final predicted class label for a given instance[2][4].
Therefore, the way the decision process is carried out has a
strong influence in the classification performance[2].

We develop an experimental analysis in the context of
multi-class classification. We will make use of linguistic Fuzzy
Rule Based Classification Systems (FRBCSs), that constitute a
very spread tool for classification problems. An advantage of
the FRBCSs is the interpretability of the generated model[5].
An FRBCS presents two main components: the Inference
System and the Knowledge Base (KB). The KB is composed
of two parts: the Rule Base (RB), constituted by the collection
of fuzzy rules, and the Data Base (DB), that includes the

membership functions of the fuzzy partitions associated to
each linguistic variables. The composition of the KB directly
depends on the problem being solved. If there is no expert
information about the problem, it is necessary to perform an
automatic learning process to derive the KB from examples.
There are some proposals of decomposition techniques for
dealing multi-class problems with FRBCSs [6][7][8].

The majority of algorithms for learning the KB of an
FRBCS, considers a previously defined DB and only derives
the RB. Generally, the DB is built by choosing a number of
linguistic terms for all the variables (an odd number between
3 and 7 is a typical decision) and considering uniform fuzzy
partitions. However, the granularity level has a significant
influence on the FRBCS performance as it has been analyzed
in [9]. The number of labels of each partition can be viewed
as a sort of context information. A fuzzy partition with too
many linguistic terms, probably will have unnecessary terms,
that is, they can contribute nothing, probably decreasing the
interpretability of the model. Additionally, in some case they
may cause confusion also hindering the discrimination ability
of the classifier. In other cases, it would be convenient to add
new linguistic terms to appropriately differentiate the values
of the variable. Some methods for the KB learning in fuzzy
modeling and fuzzy classification include the granularity level
learning [10][11][12][13][14].

The main purpose of this paper is to improve the perfor-
mance of an OVO scheme built with FRBCSs by learning an
appropriate granularity level for each fuzzy partition. To do so,
we employ an approach to derive the whole KB that involves
the use of two different (and independent) learning processes,
in which a DB definition process wraps a RB learning one.
Specifically, we use a Genetic Algorithm (GA)[15] for the
granularity learning and a classical fuzzy rules generation
algorithm, the Chi et al.’s method[16] for the RB derivation.
A similar KB learning scheme was performed in [10][11] for
regression problems and in [14] to design more interpretable
FRBCSs for binary-class problems with imbalanced data-sets.

In order to illustrate the good performance of the proposed



scheme of an OVO strategy with the KB learning process men-
tioned, we will compare the obtained results with the Chi et
al.’s algorithm and with the application of OVO decomposition
using Chi et al.’s method as method for generating the binary
classifiers.

We have selected a collection of multi-class data-sets from
KEEL data-set repository1 [17] for developing our experimen-
tal analysis. Furthermore, we will perform a statistical analysis
using non-parametric tests [18], [19], [20] to find significant
differences among the obtained results.

This paper is organized as follows. First, Section II in-
troduces the preliminary concepts of the OVO scheme and
FRBCSs used in this paper. Next, in Section III we will
describe our proposal, an OVO strategy with FRBCSs designed
using a GA for granularity learning. The next section describes
the experimental study. Finally, in Section V, some conclusions
will be pointed out.

II. PRELIMINARIES

This section introduces the OVO scheme, some basic
concepts about FRBCS and describes the fuzzy rule learning
algorithm used in our work.

A. One-vs-One decomposition

The most common approaches for decomposition a multi-
class problem into a binary-class problem are OVO [21] and
OVA [22]. The former learns a binary classifier for each posible
pair of classes, whereas the latter constructs a binary classifier
considering each single class and all the other classes joined.
OVO has shown a better behavior than OVA in a general
scenario[2], and it has been established by default in several
widely used software tools [23], [24], [25].

OVO divides a m-class problem into m(m − 1)/2 inde-
pendent binary subproblems by contrasting all classes among
them, each of which is learnt by a single classifier. In the
classification stage, the input instance is presented to all
classifiers, so that each one of them outputs a confidence
degree rij and rji ∈ [0, 1] in favor of their couple of classes
Ci and Cj (usually rji = 1 − rij). Then, these confidence
degrees are set within a score-matrix:

R =


− r12 · · · r1m
r21 − · · · r2m

...
...

rm1 rm2 · · · −

 (1)

It is necessary an additional phase to combine the confi-
dence degrees of each single classifier. Different aggregation
methods have been proposed in order to determine the final
class [2]. The simplest aggregation is the voting strategy,
where each classifier contributes with a vote for its predicted
class. The class with the largest number of votes is the final
predicted class. However, in our case we aim to benefit from
the characteristics of fuzzy classifiers to make use of the
framework of fuzzy preference relations for classification [26]
as it will be explained in section III-B.

1http://www.keel.es/dataset.php

B. Fuzzy Rule Based Classification Systems

The usual data set of classification examples used for
learning a FRBCS consists of m training patterns xp =
(xp1, . . . , xpn), p = 1, 2, . . . ,m from M classes where xpi
is the ith attribute value (i = 1, 2, . . . , n) of the p-th training
pattern.

In this work we use fuzzy rules of the following form for
our FRBCSs:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn

then Class = Cj with RWj
(2)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an
n-dimensional pattern vector, Aji is an antecedent fuzzy set,
Cj is a class label, and RWj is the rule weight[27]. We use
triangular MFs as antecedent fuzzy sets.

C. Fuzzy rules generation algorithm

In our KB learning method, it is necessary to use a RB
derivation method. As mentioned in the previous section we
will use the Chi et al.’s rule generation algorithm[16]. This
method is an extension of the well-known Wang and Mendel
method [28] to classification problems. To generate the RB,
this method establishes an association between the space of the
features and the space of the classes by means of the following
steps:

1) Establishment of the linguistic partitions. Once the
domain of variation of each feature Ai is determined,
the fuzzy partitions are computed.

2) Generation of a fuzzy rule for each example xp =
(xp1, . . . , xpn, Cp). To do this it is necessary:
2.1 To compute the matching degree µ(xp) of the

example to the different fuzzy regions using
a conjunction operator (usually modeled with
a minimum or product T-norm).

2.2 To assign the example xp to the fuzzy region
with the greatest membership degree.

2.3 To generate a rule for the example, whose an-
tecedent is determined by the selected fuzzy
region and whose consequent is the label of
class of the example.

2.4 To compute the rule weight.

Notice that rules with the same antecedent can be generated
during the learning process. If they have the same class in the
consequent we just remove one of the duplicated rules, but
if they have a different class only the rule with the highest
weight is kept in the RB.

III. OVO STRATEGY USING FRBCSS WITH
GRANULARITY LEARNING

In this section, we describe the proposed method for
learning the FRBCS KB of each binary classifier that form
the set of classifiers of the OVO scheme and the aggregation
method used for compute the final class prediction. We denote
our proposal as CHC-GL-OVO (CHC for Granularity Learning
in OVO scheme)



A. Genetic Algorithm for learning the KB

Any optimization/search algorithm can be used for our
learning approach. In our case, we have considered a GA [15],
and more specifically, a binary-coded CHC algorithm [29]
as a robust model in accordance with its tradeoff between
exploration and exploitation.

The individuals of the GA codify the granularity level of
each feature. For evaluating every chromosome, a FRBCS is
generated. First, the DB is built considering the number of
labels codified. Uniform partitions with triangular membership
functions are considered due to its simplicity. Next, we use
an efficient method that derives the fuzzy classification rules
and then the whole KB is obtained. We must recall from the
previous section that the RB learning algorithm used in this
work is the method proposed in [16], that we have called the
Chi et al.’s rule generation method.

Several RB learning methods, including the Chi et al.’s
algorithm, tends to generate too many rules when the number
of labels per variable is high, thus leading sometimes to a
certain overfitting to the training data-set used for the learning
process. In order to avoid that problem, our GA try to learn
compact KBs by penalizing the FRBCSs with high number of
rules as it will be explained in Section III-A3.

The basic structure of the proposed GA is presented
in figure 1. Next, we describe the components of the GA
integrated in CHC-GL-OVO.

Initialize population
Evaluate initial population
While ((number evaluations < MAX Evaluations) and
(Number restart processes done < 3)) do
Begin

Selection
Crossover
Evaluation
Elitism
If (no individuals can be selected for recombination)

then Begin
Threshold - -
If Threshold < 0 then Begin

Restart
Number restart processes done ++
End

End
else Number restart processes done = 0

End

Fig. 1. CHC algorithm scheme

1) Coding scheme: An integer coding approach is con-
sidered, with a chromosome length equal to the number of
features in the data set. Each value stands for the number
of fuzzy partitions to be used in each input variable. In this
contribution, the possible values considered are taken from the
set {2, . . . , 7}.

If gi is the value that represents the granularity of variable
i, a graphical representation of the chromosome is shown next:

C = (g1, g2, . . . , gN )

2) Initial Gene Pool: The initial population is composed of
two parts. The generation of the initial gene pool is described
next:

• In the first group all the chromosomes have the
same granularity in all its variables. This group is
composed of #val chromosomes, with #val being
the cardinality of the significant term set, in our case
#val = 6, corresponding to the six possibilities for
the number of labels, 2 . . . 7. For these six possible
granularity levels, one individual is created.

• The second part is composed for the remaining chro-
mosomes, and all of their components are randomly
selected among the possible values.

3) evaluating the chromosome: There are three steps that
must be done to evaluate each individual:

• Define the whole DB using the granularity level
encoded in the chromosome. For all the features, a
uniform fuzzy partition with triangular membership
functions is built considering the specific number of
labels of the variable (gi).

• Generate the fuzzy rules by running the the Chi et al.’s
method using the DB obtained.

• Calculate the value of the evaluation function: The
usual value for the chromosome fitness in this type of
genetic learning is to choose an accuracy measure over
the training data-set, like the accuracy rate. However,
as mentioned before, we will lightly penalize FRBCSs
with a high number of rules in order to avoid the
possible overfitting. To do that, once the RB has been
generated and its accuracy rate (Acc) over the training
set has been calculated, the fitness function to be
minimized is:

FC = ω1 · (1−Acc) + ω2 ·NR

being NR the number of rules of the FRBCS and ω1 ∈
[0, 1].
In order to normalize these two values, we calculate
ω2 taking two values as a base: the Acc of the FRBCS
obtained with the RB generation method considering
the DB with the maximum number of labels in all the
variables (7 in our case) and the number of rules of
this RB (N rules):

ω2 = αω2
· Accmax g

N rulesmax g

with αω2 = 1− ω1

4) Selection: This genetic model makes use of a mech-
anism of “Selection of Populations”. M parents and their
corresponding offspring are put together to select the best M
individuals to take part in the next population (with M being
the population size).

5) Crossover: This operator allows one to combine two
chromosomes of the population to generate their offspring.
The standard crossover operator in one point is applied. This
operator performs as follows. A crossover point p is randomly
generated (the possible values for p are {2, . . . , N}) and the
two parents are crossed at the p-th variable.



6) Incest prevention: It promotes diversity among solutions
(which is important to properly search the whole search space).
Two parents are crossed if their distance divided by 2 is above
a predetermined threshold T , which is initially computed as
N/4 being N the length of the chromosome. If no individuals
are recombined, then the threshold value is reduced by one.

If C1 and C2 are the two chromosome to recombine:

C1 = (g1, g2, . . . , gN )

C2 = (h1, h2, . . . , hN )

The distance measure used in this paper (Dist)is calculated
by:

Dist =
∑

abs(gi − hi) i : 1..N

7) Restarting approach: The mutation operator is replaced
by this mechanism in order to get away from local optima.
When the threshold value T is zero, the best chromosome is
maintained (elitist scheme) and used as a temple from generate
at random new chromosomes by randomly changing the 35%
of the genes.

B. Aggregation method for the OVO decomposition

As mentioned in the previous section, we make use of
the fuzzy preference relations for aggregating the outputs of
each binary classifier. In this scheme, the classification problem
is translated into a decision making problem for determining
the final predicted class among all predictions for the binary
classifiers. Specifically, in this paper we consider the use of
a maximal Non-Dominance Criterion (ND) [6] for the final
decision process. This method predicts the class which is less
dominated by all the remaining classes:

Class = arg max
i=1,...,m

{
1− sup

j∈C
r′ji

}
(3)

where r′ji corresponds to the normalized and strict score-
matrix.

IV. EXPERIMENTAL STUDY

In this section, we will first provide details of the
multi-class problems chosen for the experimentation (subsec-
tion IV-A). Then, we will introduce the algorithms selected
for comparison and the configuration parameters (subsection
IV-B). Next, we will describe the statistical tests applied to
compare the results obtained along the experimental study
(subsection IV-C). Finally, we show the results obtained for
all the methods and the statistical analysis (subsection IV-D).

A. Data-sets

We have used nineteen data-sets from KEEL data-set
repository [17], so that the same data partitions can used by
other researchers. In order to correct the data-set shift [30],
[31], [32], situation in which the training data set and the test
data set do not follow the same distribution, we do not use the
the commonly used cross-validation scheme. We will employ
a recently published partitioning procedure called Distribution
Optimally Balanced Cross Validation [33].

Table I summarizes the characteristics of these data-sets.
There are different imbalance ratios, from totally balanced
data-sets to highly imbalanced ones, besides the different
number of classes. Some of the largest data-sets (page-blocks,
penbased, satimage and thyroid) were stratified sampled at
10% in order to reduce the computational time required for
training. In the case of missing values (autos and cleveland),
we removed those instances from the data-set before doing the
partitions.

TABLE I. SUMMARY DESCRIPTION OF DATA-SETS.

Data-set #Ex. #Atts. #Num. #Nom. #Cl.
Balance 625 4 4 0 3
Contraceptive 1473 9 9 0 3
Hayes-roth 132 4 4 0 3
Iris 150 4 4 0 3
NewThyroid 215 5 5 0 3
Tae 151 5 5 0 3
Thyroid 720 21 21 0 3
Wine 178 13 13 0 3
Vehicle 846 18 18 0 4
Cleveland 297 13 13 0 5
Page-blocks 548 10 10 0 5
Autos 159 25 15 10 6
Glass 214 9 9 0 7
Satimage 643 36 36 0 7
Segment 2310 19 19 0 7
Ecoli 336 7 7 0 8
Penbased 1100 16 16 0 10
Yeast 1484 8 8 0 10
Vowel 990 13 13 0 11

B. Algorithms of comparison and parameters

We will analyze the influence of granularity learning by
means of a comparison between the performance of CHC-GL-
OVO and two other related methods:

• The original Chi et al.’s method [16], that needs of the
existence of a previous definition for the DB, normally
uniform fuzzy partitions with the same number of
labels in all the variables. Therefore, it is necessary
to choose a granularity level, being the usual values
employed for any standard FRBCS approach in the
specialized literature 3, 5 and 7 labels per variable. the
best results were obtained with three variables. So, we
use that value for building the FRBCS. We call this
method Chi-G3.

• The OVO strategy using the Chi et al.’s algorithm for
determining every FRBCS (denoted Chi-OVO). In this
case, we also consider three labels per feature and the



same aggregation method than our proposal, the Non-
Dominance Criterion explained in section III-B.

The configuration for the FRBCSs is presented in Table II
being “Conjuction operator” the operator used to compute the
compatibility degree of the example with the antecedent of the
rule and the operator used to compute the compatibility degree
and the rule weight.

TABLE II. CONFIGURATION FOR THE FRBCS

Conjunction operator: Product T-norm
Rule Weight: Penalized Certainty Factor [27]
Fuzzy Reasoning Method: Winning Rule

The specific parameters setting for the GA of CHC-GL-
OVO is listed below, being N the number of variables:

• Number of evaluations: 500 ·N

• Population Size: 60 individuals

• Fitness function weights: (ω1 = 0.8 , αω2 = 0.2)

C. Statistical tests for performance comparison

In order to carry out the comparison of the classifiers
appropriately, non-parametric tests should be considered, ac-
cording to the recommendations made in [18], [19]. In this
contribution, we will consider the Friedman Aligned test for
both computing the ranking of the algorithms according to its
performance, and the p-value that determines significant differ-
ences among the results. Then, we will proceed with a Holm
non-parametric statistical procedure for 1 · n comparisons,
obtaining the adjusted p-value (APV) associated with each
comparison, which represents the lowest level of significance
of a hypothesis that results in a rejection. Additionally, in
order to perform comparisons between two algorithms, we will
use the Wilcoxon paired signed-rank test [34]. Any interested
reader can find additional information on the thematic website
http://sci2s.ugr.es/sicidm/, where software for the application
of the statistical tests is provided.

D. Experimental Analysis

Table III shows the results in performance (using the accu-
racy metric) for CHC-GA-OVO and the algorithms employed
for comparison, that is, Chi-G3 and Chi-OVO, being Tr the
accuracy over the training data-set and Tst the accuracy over
the test data-set.

As it can be observed, the prediction ability obtained
by CHC-GA-OVO is higher than the obtained for the other
methods, showing the significative influence of the granularity
level in the behavior of the classifier regarding to the classical
way to proceed in both possibilities, with and without an OvO
decomposition. It can be seen that there are data-sets in which
Chi-OvO obtains results clearly worse than Chi-G3 (thyroid,
page-blocks, balance) and data-sets with the opposite behavior,
Chi-OVO clearly better than Chi-G3 (satimage, yeast, vowel,
cleveland). Note that CHC-GA-OVO obtains similar results to
the best of the other two algorithms in both cases, showing
the robustness of the method.

In order to validate these results, we show the ranking on
precision of the different models by means of the procedure
described in subsection IV-C. Table IV-D shows the P-values
obtained in by applying post hoc methods over the results of
Friedman Alligned procedure.

TABLE IV. POST HOC COMPARISON TABLE FOR α = 0.05
(FRIEDMAN ALLIGNED)

i algorithm z = (R0 −Ri)/SE p Holm
2 Chi-G3 3.757887 0.000171 0.025
1 Chi-OVO 1.944914 0.051785 0.05

Next, we perform a sign test and a Wilcoxon test for
detecting significant differences between the results of CHC-
GL-OVO and the other two approaches. The results of these
tests are shown in Table IV-D where, by columns, it is
represented the current comparison, the number of wins, ties
and loses for the CHC-GL-OVO method versus the standard
FRBCS approaches, the sum of the ranks for CHC-GL-OVO
and the other methods respectively, and the p-values obtained,
first by the sign test, and second by the Wilcoxon test.

TABLE V. SIGN AND WILCOXON TESTS TO COMPARE CHC-GL-OVO
[R+] WITH THE OTHER METHODS [R−] REGARDING THE ACCURACY

RATE METRIC

VS R+ R− Exact P-value Asymptotic P-value
Chi-OVO 146.0 25.0 0.006576 0.007894
Chi-G3 170.0 20.0 0.0014114 0.002379

V. CONCLUSIONS

This contribution has described a learning process for
multi-class problems following the One-vs-One decomposition
strategy that aggregates the outputs of the binary classifiers
obtained for each pair of classes. We have used FRBCSs as
classifiers. A stationary GA based on the well-known CHC
algorithm is used for granularity learning, which is combined
with an efficient fuzzy classification rule generation method to
obtain the complete KB of each binary-class FRBCS.

Our proposal try to find a good granularity level that
outperform the prediction ability of the classifier and it is
compared with the classical way to design FRBCS, that is,
without granularity learning, with and without OVO decompo-
sition. The proposed method obtains better results in accuracy
rate than the classical approaches in the majority od data-
sets considered, showing significative differences according the
non-parametric statistical test.

We must remark that one advantage of the learning process
proposed is that the GA can be combined with any fuzzy
rules generation method. We have used a basic algorithm for
efficiency but more accurate ones can be used, or another more
suitable for a specific data-set.

In future works, we will try to adjust the learning process in
order to improve the results and to decrease the computational
time of the GA.
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TABLE III. EXPERIMENTAL RESULTS IN TRAINING AND TEST WITH THE STANDARD ACCURACY METRIC. FROM THE LEFTMOST TO THE RIGHTMOST
COLUMN WE SHOW THE RESULTS FOR THE STANDARD CHI ET AL.’S ALGORITHM WITH 3 LABELS (CHI-G3), THE PAIRWISE LEARNING APPROACH

(CHI-OVO) AND OUR PROPOSED OVO GRANULARITY LEARNING APPROACH (CHC-GL-OVO). THE HIGHEST PERFORMANCE VALUE PER DATASET IS
STRESSED IN BOLDFACE.

Dataset Chi-G3-tra Chi-G3-tst Chi-OVO-tra Chi-OVO-tst CHC-GL-OVO-tra CHC-GL-OVO-tst
autos 91.99 61.09 97.66 64.81 99.68 65.62
balance 91.56 90.24 84.84 80.18 91.16 88.63
cleveland 92.17 38.39 94.95 53.88 94.94 52.22
contraceptive 51.93 40.05 59.18 46.37 77.16 48.20
ecoli 75.83 72.39 84.00 78.07 90.63 80.51
glass 66.24 59.02 73.38 59.86 84.94 63.02
hayes 78.75 64.97 91.41 64.38 88.12 68.07
iris 93.67 93.33 96.33 96.00 96.67 94.67
newthyroid 85.93 84.65 95.35 93.02 94.30 93.02
page-blocks 92.06 91.98 79.17 79.06 90.94 89.67
penbased 98.24 97.85 98.50 98.05 94.14 90.50
satimage 48.32 48.28 74.41 71.98 93.54 77.14
segment 87.10 86.19 92.93 91.08 92.14 90.74
tae 61.44 54.18 64.60 57.12 76.50 57.88
thyroid 92.97 92.13 53.07 52.55 93.38 92.24
vehicle 66.11 61.36 73.23 62.43 94.39 66.79
vowel 55.73 53.23 92.70 89.49 96.72 93.03
wine 98.59 92.15 98.59 91.52 98.03 93.84
yeast 29.68 28.98 57.26 55.21 62.47 57.62
Z AVG 76.75 68.97 82.19 72.90 89.99 77.02

REFERENCES

[1] A. C. Lorena, A. C. Carvalho, and J. M. Gama, A review on the combi-
nation of binary classifiers in multiclass problems, Artificial Intelligence
Review 30(1-4): 19-37, 2008.

[2] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
An overview of ensemble methods for binary classifiers in multi-class
problems: Experimental study on one-vs-one and one-vs-all schemes,
Pattern Recognition 44(8): 1761-1776, 2011.

[3] E. L. Allwein, R. E. Schapire, and Y. Singer, Reducing multiclass to
binary: A unifying approach for margin classifiers, Journal of Machine
Learning Research 1: 113-141, 2000.

[4] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
Dynamic classifier selection for one-vs-one strategy: Avoiding non-
competent classifiers Pattern Recognition 46(12): 3412-3424, 2013.

[5] H. Ishibuchi, T. Nakashima and M. Nii, Classification and modeling with
linguistic information granules: Advanced approaches to linguistic Data
Mining, Springer–Verlag, 2004.

[6] A. Fernandez, M. Calderon, E. Barrenechea, H. Bustince, Humberto
and F. Herrera,Solving multi-class problems with linguistic fuzzy rule
based classification systems based on pairwise learning and preference
relations, Fuzzy Sets and Systems, 161(23): 3064–3080, 2010.

[7] S. Elhag, A. Fernandez. A. Bawakid, S. Alshomrani and F. Herrera,
On the combination of genetic fuzzy systems and pairwise learning
for improving detection rates on Intrusion Detection Systems, Expert
Systems with Applications 42(1): 193–202, 2015.

[8] M. Elkano, M. Galar, J. Sanz, A. Fernandez, E. Barrenechea, F. Herrera,
and H. Bustince, Enhancing multi-class classification in FARC-HD fuzzy
classifier: On the synergy between n-dimensional overlap functions and
decomposition strategies, IEEE Transactions on Fuzzy Systems, 2015.
In press

[9] O. Cordón, F. Herrera, and P. Villar, Analysis and guidelines to obtain
a good uniform fuzzy partition granularity for fuzzy rule–based systems
using simulated annealing, International Journal of Approximate Rea-
soning 25(3): 187–215, 2000.

[10] O. Cordón, F. Herrera, and P. Villar, Generating the knowledge base
of a fuzzy rule–based system by the genetic learning of the data base,
IEEE Transactions on Fuzzy Systems 9(4): 667–674, 2001.

[11] O. Cordón, F. Herrera, L. Magdalena, and P. Villar, “A genetic learning

process for the scaling factors, granularity and contexts of the fuzzy rule–
based system data base, Information Sciences 136: 85–107, 2001.

[12] E. Zhou and A. Khotanzad, Fuzzy classifier design using genetic
algorithms, Pattern Recognition 40(12): 3401–3414, 2007.

[13] I. Walter and F. Gomide, Genetic fuzzy systems to evolve interaction
strategies in multiagent systems, International Journal of Intelligent
Systems 22(9): 971–991, 2007.

[14] P. Villar, A. Fernández, R. Carrasco, F. Herrera, Feature Selection
and Granularity Learning in Genetic Fuzzy Rule-Based Classification
Systems for Highly Imbalanced Data-Sets, International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 20(3): 369–397, 2012.

[15] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley, 1989.

[16] Z. Chi, H. Yan, and T. Pham, Fuzzy algorithms with applications to
image processing and pattern recognition, World Scientific, 1996.
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