Don’t miss the complete programme of VCBM 2018!
Ultrasound Decompression for Large Field-of-View Reconstructions
Full Paper
Tracked medical ultrasound allows for cost-effective and radiation-free imaging of anatomy featuring a very high spatial resolution. To overcome the limitations of the small field-of-view, sonographers can acquire multiple adjacent sweeps and compound them into a single volumetric representation. However, due to the inherent local and non-uniform compression of the underlying anatomy (caused by the ultrasound probe) the adjacent sweeps often exhibit poor alignment and discontinuities. We propose a novel decompression model to compensate for probe pressure related artifacts. It incorporates domain knowledge of the global acquisition pattern for regularization and allows for seamless stitching of multiple overlapping 3D freehand sweeps into one volume. The resulting extended field-of-view visualization provides the clinician with spatial context so that so that the relationship between individual features are easier to understand. Our experiments show that the resulting extended field-of-view reconstructions have a superior image quality in terms of alignment and continuity of the visible anatomy compared to the original acquisitions. Comparison to ground truth MRI data demonstrates the plausibility of our non-rigid decompression model.
Framework for Fusion of Data- and Model-Based Approaches for Ultrasound Simulation
MICCAI invited talk
Navigation, acquisition and interpretation of ultrasound (US) images relies on the skills and expertise of the performing physician. Virtual-reality based simulations offer a safe, flexible and standardized environment to train these skills. Simulations can be data-based by displaying a-priori acquired US volumes, or ray-tracing based by simulating the complex US interactions of a geometric model. Here we combine these two approaches as it is relatively easy to gather US images of normal background anatomy and attractive to cover the range of rare findings or particular clinical tasks with known ground truth geometric models. For seamless adaption and change of US content we further require stitching, texture synthesis and tissue deformation simulations. We test the proposed hybrid simulation method by replacing embryos within gestational sacs by ray-traced embryos, and by simulating ectoptic pregnancies.
Don’t miss the complete programme of VCBM 2018!
