Real Time Formal Specification
using vpbmtt

Jan van Katwijk Eugéne Diirr Stephen Goldsack
Delft University of Technology CAP Gemini Sogeti Imperial College London,
Netherlands Netherlands United Kingdom

Email: J.vanKatwijk @twi.tudelft.nl

Abstract

VDMt ! is a formal Object Oriented Specification lan-
guage, derived from VDM. It extends VDM by providing
object-orientation and concurres.cy features. The use of the
language is supported by design guidelines and a toolset.
The latter offers graphical representations, syntactic and se-
mantic checking, pretty printing and code generation.

Inthis paperwe address real-time extensions as being de-
veloped for the language.
Keywords: Software
Object-Oriented processing,

Engineering, Real-time

1. Introduction

In this paper we report on our work on extending
VDM* in the area of real-time specifications. VDMt is
meant to be a notational vehicle for modeling and develop-
ment of systems. Being born from VDM, the language pro-
vides a rich set of data structures for building abstract mo-
dels of the system to be built. To support the development
process, data and operation reification techniques, as known
in plain VDM, are extended with specific Object-Oriented
refinement steps (termed "annealing”). The development of
a system from a high-level model consists of repeatedly ap-
plying these annealing steps. A large collection of more or
less standardized reification steps is being developed.

The language has shown to be successful as specification
language in a number of commercial project. One of the ma-
jor successes of the language was its use in the Combicom
project [10], [11].

In this paper we discuss extensions to
the VDM language that we are currently working on to
support real-time issues in modeling and development.

! The VDM-++ work was partially funded by the European Information
Technology Research Programme, Esprit I under number 6500.

0-8186-7570-5/96 $5.00 © 1996 IEEE

17

The structure of this paper is as follows. In section 2 we
briefly discuss the main characteristics of VDMt | in sec-
tion 3 we discuss the way action/event modeling is included
inthe language, and in section 4 we illustrate the typical real-
time features of the language by an example. Finally, in sec-
tion 5 we discuss some conclusions and future work.

2. VDM++, a brief overview

vDMt+ [3, 1] is a formal specification language based
on VDM-SL [5, VDM Standard] and extended in an object-
oriented fashion with elements from Smalltalk [4]. vDM*++
provides a wide range of constructs such that a user can
formally specify (concurrent) systems in an object-oriented
fashion.

The language was originally created by Eugene Diirr. It
has been developed into a full, mature language as as part
of the ESPRIT-III project Afrodite (project number 6500).
During the Afrodite project, the language was established
by developing a complete definition. Furthermore, a tool-
set was designed and implemented to provide commonly
used object-oriented graphical representations (OMT) as re-
presentation of VDM specifications. Apart from a tool-
set aiming at support in building a specification, a language
interpreter was developed (obviously only interpreting the
execuatble elements in the language), while furthermore a
C-++ prototype code generator was developed with which
(parts of) VDM™* specifications can be transformed into
C++ code. Recent developments of the language are related
to extensions for real-time object-oriented specification.

In VDM** a complete formal specification, also called a
Model, comprises a set of class specifications and an optio-
nal specification of a workspace.

A class specification in VDMt has the following com-
ponents :

Class header In the class header one specifies the name
of the class, and its possible relationship with parent

classes. is subclass of clause achieves (multiple) in-
heritance from other classes.

Instance Variables The state of an object is made up from
the values of the instance variables of the object. In-
stance variables are variables of simple types, VDM-
SL typeconstructors as sets, sequences and maps
and object references (clientship relation denoted by
@Classname) can be declared here. The state space of
objects of a given class can be constrained by the spe-
cification of an invariant clause, arelation over the in-
stance variables of the objects of the class. Similarly,
the set of allowable initial values of the instance vari-
ables of the objects of a given class can be specified
using an initial specification,

Methods The methods belonging to the objects of a class
can be defined several ways:

o implicitly, by specifying the pre- and postcondi-
tions of the method. As in VDM-SL , the pre-
condition refers to values of state elements be-
fore invocation of the method, the post condi-
tion may refer to values of state elements as they
were before invocation as well as as they are af-
ter invocation of the method.

class example is
s: sequence of T;
method my_try ()
pre not is_empty (s)

post is_inverse (7s, s)

As in VDM-SL , a reference to a name preceded
by a tilde in the post condition indicates a refe-
rence to the value prior to invocation of the me-
thod.

Roughly speaking, the VDM-SLsemantics apply,
i.e. the operation is only defined when the pre-
condition is satisfied, while loosenessin the post
condition is allowed.

explicitly, using functional and imperative con-
structs, although this style is not encouraged in
the specification of high-level models.

as not yet defined, A specification as not yet de-
fined is useful when the environment of an ob-
ject demands the existence of a method, but at
the same time — at that stage of development — it
is not considered necessary to present its exact
definition.

Invocation of a method of a client object is considered
to be a statement. The invocation syntax is

expression | methodname (parameters)

18

For a well-formed spe-
cification, the expression yields an object of a class
that contains the method methodname.

Controlled Inheritance An inheritance reduction clause
can restrict visibility of methods obtained from the su-
perclass to the external user of an object.

Auxilary Reasoning A class might have an Auxilary Re-
asoning part. In such a part, axioms, properties, and
invariants required to perform correctness proofs and
constraints for other depending classes can be speci-
fied here. References to internal states of client ob-
jects are limited to read-only accesses. The format is
not constrained, the contents of the auxiliary reaso-
ning part are not processed by the available tools.

Outline of an example

class Train
instance variables

speed : N;
powexr : N;
direction: (Forward, Backward);
inv speed = F (power)

methods
set_power () == not yet defined
get_speed () == not yet defined

end Train

The example class defines objects of class Train, used in
alater section of this paper. The state of the train consists of
the power supplied to drive the train, and the direction of the
transmitted speed. The instance variable speed is related to
the power by the invariant P.

A system specification is completed by the description of
aworkspace. The workspace mechanism has the role of the
"main procedure’ in other languages. Usually, a workspace
has a special method called the ’initial-method’. Its role is to
create the objects of which the system is initially composed,
and to establish their topological relations. A workspace ob-
ject is implicitly created at the start of the pseudo execution
of the specified system and its initial method is invoked by
Deus ex Machina. The (pseudo) execution of parallel exe-
cuting objects is started from here.

3. Real-time specification and vpbm*+

3.1. Introduction

The VDM™* paradigm states that building a high-level
model of the system should result in a model of the software
system, together with its environment. The model is closed,
i.e. it contains all interactions between the submodel of the
software system and the submodel of the environment.

Elements in the environment are usually represented by
objects, as is the model of the software system itself. Objects

therefore are considered to model/simulate active world en-
tities, as a result, objects need some form of behaviour.

In VDMT* we have chosen to make an object active by
allowing a class to contain a specification of a thread. The
thread definition has the form

thread
thread specification

A thread specification is either a procedural thread, or a
declarative one. The declarative form specifies a periodic
action, the execution of a method, to be executed with a gi-
ven period.

periodic(AT)(methodname)

It is assumed that for each thread a processor is available
for the execution of methods.

The procedural form a the thread is not used throughout
this paper and will not be discussed here.

Apart from objects being active by letting them have thre-
ads, we needed the notion of time. In VDM** | a global
clock is assumed, that can be read by anyone. It’s value can
be read by refering to the implied clock variable now.

Since, time is considered to be a continuous variable with
infinite accuracy, expressions using references to time in a
system cannot not use strict equality.

Introducing time this way, allows the functionality of me-

thods to depend on time (at least to a certain extent).
Consider as an example

class example is

method exec_time () returns d: real;
post (d = time - “time)

Since time is considered to be a state element, its value
before and after invocation of a method can be queried.

In the example an implicit method is specified. The post
condition of the method states that the returned value (d),
will be equal to the difference between the value of time as
it holds after the invocation of the method is finished and the
value of time as it holds before invocation. I.e., the result
of invocation of the method will be the duration of its exe-
cution.

3.2. vDM+* and events

The paradigm in modeling real-time systems states that
the state of the system acts as the interface between the con-
trolling and the controlled system. Each object in the system
inspects the state and reacts upon changes in this state. Each
change in the state can be considered to be an event. More
formally speaking, an event is the marker in time at which a
predicate yields true.

19

Being in an object-oriented world however, where hiding
is one of the fundamental issues, only a part of the whole sys-
tem state is directly visible. This is fundamentelly different
than e.g. in VDM-SL where the whole state is visible from
each operation.

Some attention to what can be part of the predicate defi-
ning an event is therefore inevitable. Elements to be taken
into account when defining events are:

1. an observable transition of the state of system. Within
an OO specification visibility of the state is typically
limited to the values of the instance variables of the
current object, the values of instance variables of pa-
rent objects and the values of instance variables in the
worksapce. Visibility of change is therefore typically
limited to a change in the value of these variables.

. the transition of the systems’ state resulting from han-
ding a method request or method invocations. Here
the changes are made observable through the intro-
duction of synchronisation variables. VDM has the
following built-in events:

o the request to execute a
method. req(methodname) will become true,
raising an event, as soon as a request to execute
the method methodname is issued;

the actual activation
(start) of a method, act(methodname) will be
true, raising an event, as soon as the invocation
of the method is a fact;

the finalisation of a method, fin(methodname)
will be true, raising an event, as soon as the invi-
cation of the method methodname terminates.

The default available variables #req, #act and #fin
record these transitions as counters. Notice that the
events will be raised independent of the method of in-
vocation of a method. I.e., although a method invo-
cation in a periodic thread is not visibly by an explicit
call, the same events apply.

Requirements for event handling in a specification nota-
tion are (i) the ability to specify events, (ii) the ability to spe-
cify the system’s reaction upon an event, and (iii) the ability
to specify temporal constraints on the occurrences of events
and reactions. In our VDM*+ extension, we offer the capa-
bility specifying within the thread part of a class specifica-
tion a connection between an action to the occurrence of an
event, using a statement of the form:

whenever condition also

[from delay] ==> predicate

Such an action spe-
cification tells that whenever condition becomes true, the
system should realize predicate within delay units of time.

Obviously, having the notion of time available, one might
raise an alarm at a specified time

ThisAfternoon
==> fin (methodname)

whenever now >
also from delta

This specification states that an event is raised as soon
as a certain calendar time is reached. On raising this event,
the execution of the method methodname should be finis-
hed within delta units of time.

Generalizations are straightforward:

whenever P (now, period) also
from delta ==> fin (methodname)

Suppose that P is a predicate that yields true when
now MOD period < Small Value

I.e., in this case, we emulate a periodic obligation.
An obvious well formedness condition is that

Duration(methodname) < period

The ability to refer to ‘state’ of method invocations al-
lows us to specify e.g. the upperbound of the execution of a
particular invocation. Consider as an example

In this specification, an upperbound for the execution of
methodname is given. As soon as methodname is invoked,
the specification requires the implementation to ensure that
the finalization of the invocation of methodname is not later
than deltal units of time.

whenever
also from deltal ==> fin

reqg (methodname)
(methodname)

In this specification, it is indicated that the execution of
a method methodname should be terminated within deltal
units of time after a request to its invocation is made.

whenever #act (methodname) >

#fin (methodname)
also from delta ==>

This example shows a statement in which an unspecified
predicate (indicated by ‘...’, is to become true within delta
units of time from #act > #fin becoming true,

Itis assumed that the performance “consumption” for the
evaluation process of the various conditions is taken into ac-
count when writing the specification. The existence of the
“from delta” construct acknowledges that in the real world
computations and reactions takes time and cannot be exe-
cuted in zero time. Omitting such a restriction specifies are-
quirement that is hard to fullfil: the predicate acting as con-
sequent in the implication is to be made true in zero units of
time.

20

If sensor based systems are involved, the interface bet-
ween the controlled system and the controlling system may
contain variables that can be assumed to be changed by the
environment.

E.g.

whenever temp >t

can be used. In alater refined model, a sensor object will
probably be introduced and the temperature observation me-
chanism will be specified in more detail.

3.3. Discussion

The semantics of having more than a single whenever
clause within a single thread deserves some attention. Cur-
rent semantics assume that multiple whenever clauses wit-
hin such a thread exclude each other. In the event that two or
more events become true at the same moment, only one of
the clauses will be executed further. It is the responsibility
of the specifier to ensure that all specified whenever clau-
ses are indeed schedulable within their deadlines. Consider
as an example

class example

methods

thread
whenever Pa also within deltal ==> Qa
whenever Pb also within delta2 ==> Gb

end.égample

Assume furthermore that, in order to satisfy Qa a method
need to be invoked that takes Fz; units of time. Assume fur-
thermore that, in order to satisfy Qb a method need to be in-
voked that takes Frs units of time.

If, at any moment Pa and Pb become true at the same
time, a necessary condition is that

Bz + Ery < min(deltal, delta2)

In general, however, two or more conditions in different
objects may become true at the same time, raising different
exceptions within different threads. If the actions, associ-
ated with the handling of these events, refer to the same state
variables, the result is, formally speaking, undefined. It will
depend upon the speed and the (arbitrary) order in the exe-
cution of the components, race conditions might occur.

Safe specifications can therefore not use instance vari-
ables in an updating mode, unless extensive proof is deli-
vered about non interference to these variables at all times.
Read only access is safe. We are considering a language ex-
tension which allows users to add their own sync variables

(variables which can be updated atomically) similar to the
currently built-in #req, #act and #fin.

It is interesting to compare the event/action approach, as
followed here, to the enabling approach. In the latter, at
any state an operation will be selected that has a fullfilled
precondition. No queuing of ‘enabled’ operations will take
place. In our approach, queuing will occurr indeed. Whever
two or more events are raised the associated operations will
be queued for execution.

An interesting question was raised in [13]. In this pa-
per, the notion of real-time object (RTO.k) was introduced.
Such real-time objects would form the basic building blocks
of real-time systems. The structure of an RTO, obviously,
resembles the structure of the VDMt class. However, in
RTO.k objects, the methods are partitioned into two clas-
ses. Elements of one class are exported and made visible to
cleints of the objects, elements of the other class are kept in-
visible to the external world. Itis with elements of this latter
class that structures, comparable to our whenever constructs
are built.

Whether or not additional constraints should be put on the
methods that can be used within thread specification is sub-
ject to further research.

Notice that an action/event model has some intrinsic pro-
blems, since the conditions leading to raising an event may
have been changed whenever the action, scheduled by the
event, is executed. Actions that are invoked as a response
upon the raising of an event should establish whether or not
the conditions, causing the event to be raised, still exist.

4. A case study: the railroad controller

Effectively evaluating formal specification notations is
not always easy. In our research, we use a single example
for the comparison of different specification notations. In
[12], a brief comparison is given of the use of formal spe-
cification notations for a simple train controller. In this sec-
tion, we briefly discuss the use of VDM* ™ as vehicle for the
specification of the same controller.

The specification is sufficiently realistic to get a good in-
sight in the possibilities and limitations of specification no-
tations. It involves both data and control issues. The rail-
road itselfis to be represented as some (rather complex) data
structure. Physical devices (i.e. switches and trains) have
to be manipulated as functions of the time and system state
as well. Furthermore, the controller is subject to temporal
constraints. Each train has deadlines w.r.t. its arrival time
on specified positions, while furthermore, reactions of the
system on occutrences of events should be within specified
times.

21

Figure 1. Fragment of railroad

4.1. The problem

A (toy) railroad system is built up from a variety of (connected)
rail elements (straight elements, bowed elements, crossings and
switches. Rail elements have a fixed length of app 23 cm, they are
grouped into physical blocks, a block is connected to hardwired
devices. Through a computer (serial) interface, commands can be
given:

o status enquiry commands (i.e. blocks being occuppied or
not).

o swilch setting/resetting commands.

e train commands, setting speed (between 0 and 30 cm/sec),
setting lights, a horn and a direction (in our model, we ig-
nore the horn and the lights).

The controlled behaviour of the train should conform to require-
ments set for the train movements by a specified mission, one for
each train. Missions, and therefore train routes, are expressedin
terms of tracks, where a track is a path over a block.

The problem is to specify (and subsequently design and imple-
ment) a software controller with which the behaviour of the system,
i.e. train movements and switch status, can be controlled. Follo-
wing obervations made by many researchersin the field, we require
the model to be closed, i.e. encompassing both a model for the con-
troller and for the controlled entities.

A train drives according to a sequence of commands. A
command indicates what a train is required to do on a given
track, i.e. a PASS command indicates that the train should
drive over the specified track and should have reached the
end of it no later than the specified time. (A track represents
a block, i.e. a group of connected rail elements, together
with an indication of an entry and exit. Blocks, entries and
exits are encoded as naturals. A track is encoded as a triple

(block, entry, exit).)
Consider for example the following specification of a
small mission ,

INIT (1, 1, 2)

START (1, 2, 1), 1000, 1010
PASS (2, 1, 2), 1020

PASS (3, 1, 2), 1030

STOP (4, 1, 2), 1035

START (4, 2, 1), 1035, 1040
PASS (3, 2, 1), 1050
PASS (2, 2, 1), 1060
STOP (1, 2, 1), 1070

After being initialized (/NIT') on track (1, 1, 2), the train
starts at time 1000 on track (1, 2, 1) (in our encoding, track
(1, 2, 1) is the reverse from (1, 1, 2)). The train is forced to
move such that it leaves that track no later than 1010. The
subsequent track on the route, (2, 1, 2), should be passed
such that the train reaches the end of the track no later than
1020, etc. The track (2, 1, 2) being the logical successor of
track (1, 2, 1) is obviously a well-formedness constraint on
the railroad.

4.2. A VvDM* solution

The structure of the specification In [9] the architecture
of the solution is given in great detail. Due to space con-
straints, we limit the presentation of the solution here to a
discussion of some details.

The specification contains the following classes:

The class Train. Objects of this class model the phy-
sical trains, as driving on the physical railroad;

The class RailRoad. A single object of this class mo-
dels the railroad on which the trains are driving;

The class TrainPosition. Objects of this class mo-
del the relation between the trains and the railroad, i.e.
they model the positions of the trains.

The class TrainController. Objects of this class (one
for each train) model the controller function to be exe-
cuted in order to have the associated train show the re-
quired behaviour. The objects of this class contain the
sequences of commands, to be executed for the asso-
ciated trains.

The class AllocationTable. In order to enforce that
no two trains ever appear on the same track, a track is
assigned to eat most one train. A train only drives on
allocated tracks. Management of the tracks and their
association to trains is maintained in a single object of
class AllocationTable.

Specification of train positions Train positions relate
trains to the railroad. A positioncan be derived, given a pre-
vious position, the structure of the railroad and the driving
characteristics of the train.

class TrainPosition
instance variables
railroad: @RailRoad
train : @Train

22

position: Position
methods
set_position (p: Position)

get_position (p: Position)

not yet defined
== not yet defined

new_position () == not yet defined
thread
period (100 ms) (new_position)

end TrainPosition

The behaviour of each actual train in the system is mo-
deled by an instance of the class TrainPosition. The class
relates the trains (models of which are maintained in objects
of class T'rain) to the actual railroad (modeled in an object
of class RailRoad).

The thread ensures that the position information will be
updated once every 100 milli seconds. Taken the speed of
the train into account (max 30 cm/sec) the maximum diffe-
rence between two position updates is less than or equal to
3cm.

The railroad object, referred to from the
class TrainPosition provides information on the structure
of the railroad. Given a position on the railroad, and given a
distance, a new position (taking into account the state of the
switches) is computed.

Train objects contain state information on the trains they
represent.

Outline of the controller To each individual train a con-
troller object is associated that manages that train. The con-
troller object contains an encoding of the mission of the train
and essentially executes a finite state machine for that train.
The FSM is given in figure 2.

STOPPED

Figure 2. The state diagram of the controller

The states and the transitions in the FSM are determined
by (i) the command for the train to be executed, (ii) the po-
sition of the train and (iii) the current time.

1. A train starts in state START as soon as the starting
time is reached.

2. In this state, the next track on the route of this train is
computed, and the train is set in state HALT.

3. A trainin state PASS is a running train. Such a train
remains running at least until it enters the next track
on its route. If the command to be performed on this
next track is a PASS command, an attempt will be
made to allocate the next track on the route. If this
attempt fails, the train will slow down (and enter state
SLOW), if the attempt succeeds the state PASS will
be reentered. If the next command is STOP com-
mand, state STOPPING will be entered.

4. In state STOPPING, the train will move forward un-
til it reaches the middle of the track and take state
STOPPED and halt. In this state, the only valid next
command is a START command.

5. In state SLOW, the train will continue to attempt to
allocate the required resource. If the train reaches
the middle of the track before being able to allocate
this resource it enters state HALT and the train halts.
If the train does obtain the required resource, state
PASS will be (re)entered, and the train will move with
the speed required to meet its temporal constraint.

6. In state HALT, the train will continue its attempts to
allocate the resource during a period of time. If ho-
wever, this period is finished, the train will enter state
ERROR and stops functioning. Otherwise, it will en-
ter state PASS and it continues.

Modeling the control for the trains is then modeling the
automaton in a single class.

Objects of the class contain a thread that will conti-
nuously react upon events and issue commands when reac-
ting upon them.

Class TrainController is
instance variables
mission: Instructions*
train: @TrainPosition

TrackTable : @AllocTable

CurrentMode : (HALT, STOPPING,
STOPPED, PASS,
SLOW, START)

CurrentTarget : Position

-- The target of

-- the current command
SlowTime : Time
inv

Thread
whenever -- Transition Pass to Pass
CurrentMode = PASS and
TrackOf (CurrentTarget) #
TrackOf (PositionOf (train)) and

WantsToContinue (hd Instructions) and
CanAllocateNextTrack (hd Instructions,

TrackTable)
also from 100 ==>
CurrentMode = PASS and
CurrentTarget =
TargetFrom (hd Instructions) and
act (train.
set_power (ComputePower (

TargetFrom (hd Instructions))))

and mission = tl "mission

whenever -- Transition Slow to Pass
CurrentMode = SLOW and
now < SlowTime + deadline and
CanAllocateNextTrack (hd Instructions,

Tracktable)

also from 500 ==>
CurrentMode = PASS and
CurrentTarget =

TargetFrom (hd Instructions) and

act (train. set_power (
ComputePower (

TargetFrom (hd Instructions)))) and

mission = tl "mission
end TrainController

For each transition in the FSM the pre- and postconditi-
ons can be written down easily in a functional style. Notice
however that the postcondition contains the act predicate.
The conforming implementation is to ensure that the method
set_power is activated with the correct parameter, within 100
resp. 500 milli seconds after the predicate became true, rai-
sing the event.

Specification and implementation The complete speci-
fication of the railroad controller in VDM*+ took less than
400 lines. This is roughly comparable to the sizes of spe-
cifications of the same controller in other notations. As in
other notations, it excludes the specification of the railroad
data structures, which were ‘borrowed’ from the plain VDM
specification of the same railroad (see [9]).

The specification is, due to its structuredness, somewhat
larger than a similar specification in plain VDM-SL .

The next step in the development has been the translation
of this highly structured specification into Ada-83 code. The
translation was performed by simply transforming each (ac-
tive) class into a task type, with an instantiation for each ob-
ject. Although the translation is in general a fairly simple
one, two problems occur:

o the ‘model’ used in the VDM specification is an ac-
tion/event model. Le. ‘some’ event occurs, as a result
an action is scheduled. The Ada model is, however, a
synchronous one. The translation is therefore some-
what obscured since essentially an action/event model
is ‘implemented’ in Ada.

It is interesting that a translation into Ada-95 where
asynchronicity can be obtained by using protected ob-

Jjects, which is underway, turns out to be straight-
forward.

systematically dealing with
temporal constraints in the implementation is not al-
ways trivial. The semantic gap between the also form
part of the VDM*+ whenever clause and the delay al-
ternative in the Ada selective wait construct is fairly
large. Ada (and Ada-95 as well in that respect) do not
provide much support for a direct translation. Neither
Ada nor Ada-95 provide support for mapping tempo-
ral constraints on scheduling directives.

5. Results and Conclusions

VDM™*+ has shown to be a valuable modeling tool in the
area of industrial systems. The first phase of the project,
establishing the language and a supporting toolset has been
completed. Current research aims at

o establishing the real-time elements of the language,

¢ investigating and formalizing the annealing steps in
the systems development.

Our
experiences in the design and the useage of VDM** have
shown that there is a significant amount of tension between
useability of the notation and the degree of formalism in the
notation. Our choices have been infuenced by the desire to
develop a notation that can be used as an engineering’s tool.
Le. we have been aiming at a suitable notation, sufficiently
defined, that allows engineers from a variety of disciplines
to specify high level models of the system to be build. Less
emphasis has been given to formal verifyability of proper-
ties of particular models.

Although we still have a long way to go w.r.t. the formal
verifyability of properties of given models, we have paid at-
tention to a rigorous approach to refinement (annealing).

The real-time extensions we are working with, are pre-
sented in this paper. The structure is similar to exten-
sions earlier proposed for VDM-SL , however, the object-
orientedness of the notation has influenced the design.

Current work involves handling the delay between the
event being raised and the associated action to be invoked
and the problem of verification.

6. References

References

[1] Diirr, E (1994), The use of Object-Oriented Specifications in Phy-
sics. PhD Thesis, Utrecht University, Utrecht, The Netherlands, 1994,
ISBN 90-393-0684-2.

24

Diirr, R and N. Plat Editors (1995). VDM*+ Language Refe-
rence Manual, Afrodite (ESPRIT-III project number 6500) document
AFRO/CG/ED.LRM/V 10, Cap Volmac.

Diirr, E and J. van Katwijk, (1992), VDM*+ - A formal Specifica-
tion Language for Object-Oriented Designs. In: Georg Heeg, Boris
Magnusson, Editors technology of Object-Oriented Languages and
Systems, pp 63 - 78. Prentice hall International, Proceedings of Tools
Europe *92.

Goldberg, A., Editor, (1984) Smalltalk-80, The Interactive Program-
ming Environment. Addison Wesley Publishing Company.

Jones, C. (1990). Systematic Software Development using VDM
(2nd edition). Prentice Hall International.

Mahoney, B. and Hayes, 1. Using Continuous Real Functions to Mo-
del Time Histories. In Bailes, P. Editor, Proceedings of the 6th Aus-
tralian Software Engineering Conference (ASWEC91), pp 257-270,
Australian Computer Society.

[3

[l

(4]
(5]

[6

=

[71 Eugene Diirr, Stephen Goldsack and Nico Plat. Rigorous Develop-
ment of Concurrent Object Oriented Systems. Tutorial(MMS) at the
Tools Europe '94 Conference, March 7-10,Versailles France. In :
Technology of Object Oriented Languages and Systems, Editors. B
Magnusson,B.Meyer, J.Nerson, J.F. Perrot TOOLS 13, ISBN 0-13-

350539-1, Prentice Hall, UK, (page 515)
W. Cellary, E. Gelenbe, T. Morzy, Concurrency Control in Distri-

buted Database Systems , Studies in Computer Science and Al nr. 3,
North-Holland, Elseviers Science Publishers, Amsterdam, 1988.

[8]

[9] Ton Biegstraaten, Klaas Brink, Jan van katwijk, Hans Toetenel. A
simple railroad controller: A case study in real-time specification.
Technical Report 94-86. Reports of the Faculty of Technical Mathe-
matics and Informatics. Delft University of Technology, Delft 1994.
[VDM Standard] . VDM Specifica-
tion Language: Proto-Standard(Draft). Document N-246(1-9), BSI
IST/5/-/19 and ISO/IEC JTC1/SC22/WG19, December 1992.

Cap Gemini CombiCom Team, CombiCom Internal Deliverable
S.1.X,

High Level Formal specification of the CombiCom architecture,
CombiCom Consortium.

Cap Gemini CombiCom Team, CombiCom Internal Deliverable
S3X,

Final Formal specification of the CombiCom architecture, Combi-
Com Consortium,

[10]

(1]

[12] J. van Katwijk, W.J. Toetenel. Comparing formal specifications by
measuring. Proceedings of the second International Workshop on
Real-Time Computing Systems and Applications. IEEE 1995, ISBN
0-8186-7106-8, pp 184 - 190.

K.H.XKim, C. Subbaraman, Y. Kim. Imitation of RTO .k Objects using
PCD Components in C++. In these proceedings.

[13]

7. About the authors

¢ Dr Ir E.H.Diirr is Technical Manager at Cap Gemini
Sogeti, and Assistant Professor at Utrecht University,
both in the Netherlands.

o Prof. J.van Katwijk, is professor at the Faculty of Ma-
thematics and Informatics of the Technical University
of Delft, The Netherlands

o Prof S. Goldsack is emeritus Professor at the Depart-
ment of Computing, at Imperial College in London
UK.

