
ZTC: A Type Checker for Z Notation

User’s Guide

Version 2.2, October 2002

Xiaoping Jia
School of Computer Science, Telecommunication, and Information Systems

DePaul University
Chicago, Illinois, U.S.A.

Copyright c
�

1993–2002, Xiaoping Jia

Permission is granted to copy and distribute this document free of charge for educational or non-
profit uses, provided that it is copied and distributed as a whole and without modification. Copying
and distribution of this document and/or the ZTC tool for direct commercial gain without the author’s
written permission is prohibited. The ZTC tool is distributed without warranty. The author accepts
no liability, explicit or implied, for its accuracy and fitness for any purpose.

Contents i

Contents

1 Introduction 1

2 The Input Forms 3

3 The LATEX Input — Basics 5
3.1 Choosing a package . 5
3.2 Lexical conventions . 6
3.3 Structure of specifications . 7
3.4 Formal and informal text . 8

3.4.1 Formal environments . 8
3.4.2 Comments inside formal environments 9
3.4.3 Ignore formal environments . 10

3.5 White spaces . 10
3.6 Separators . 10
3.7 Line continuing command . 11
3.8 File inclusion . 12

4 The ZSL Input — Basics 13
4.1 Lexical conventions . 13
4.2 Structure of specifications . 14
4.3 Informal text and comments . 14
4.4 Box paragraphs . 14
4.5 Non-box paragraphs and expressions . 16
4.6 Separators . 16
4.7 File inclusion . 17

5 Advanced Features 18
5.1 ZTC pragmas . 18
5.2 User-defined symbols . 18
5.3 Using LATEX macros . 20
5.4 Liberal mode . 22
5.5 Forward declaration of types . 24
5.6 Obtain type information . 24
5.7 Verbosity control . 25

6 Running ZTC 26

7 Installation 28
7.1 The distribution package . 28
7.2 Installing Windows/MS-DOS version . 29
7.3 Installing Linux version . 29

8 Registration and Bug Reports 30

A LATEX and ZSL Input Notations 32
A.1 Paragraphs . 32

A.1.1 Axiom Box . 32

ZTC 2.1 User’s Guide October 2002

Contents ii

A.1.2 Schema Box . 33
A.1.3 Generic Schema Box . 33
A.1.4 Generic Box . 34
A.1.5 Schema Definition . 35
A.1.6 Given Set . 35
A.1.7 Equivalence Definition . 35
A.1.8 Free Type Definition . 35
A.1.9 Schema Expressions . 36
A.1.10 Predicates . 37

A.2 Expressions . 37
A.2.1 Lambda Expression . 37
A.2.2 Definite Description . 37
A.2.3 Conditional expression . 38
A.2.4 Local definition . 38
A.2.5 Sets . 38
A.2.6 Ordered Pairs . 39
A.2.7 Relations . 39
A.2.8 Functions . 40
A.2.9 Numbers . 40
A.2.10 Sequences . 41
A.2.11 Bags . 41
A.2.12 Binding . 42
A.2.13 Selection . 42
A.2.14 Operators . 42

ZTC 2.1 User’s Guide October 2002

Acknowledgments iii

Acknowledgments

Many people have contributed to the development and improvement of ZTC. Particularly, I wish to
thank Mr. Philip Garofalo for developing the first ZSL parser, Mr. Sotirios Skevoulis for spending
countless hours testing the tool, Mr. Andrej Semrl and Marc Mengle for their insightful comments
regarding ZTC. I also wish to thank all my students in the Formal Methods class (SE 431) for
suffering through various � -versions of the tool. Their enthusiasm about the tool and formal methods
has been a great source of encouragement for me to complete the work.

ZTC 2.1 User’s Guide October 2002

1 Introduction 1

1 Introduction

The Z notation[1] is a model-oriented formal specification language developed by the Programming
Research Group at Oxford University Computing Laboratory in the early 80’s. Since then, Z has
been used to specify a wide spectrum of software systems including database systems, transaction
systems, distributed computing systems, and operating systems [2]. The most notable success of
Z is the specification of CICS Application Programming Interface (API) by IBM United Kingdom
Laboratories at Hursley Park [3]. Approximately 37,000 lines of code were produced from Z speci-
fications and designs, and it was reported that the code has approximately 2.5 times fewer problems
than the code that was not specified in Z.

This document is not intended to be a tutorial of the Z notation and formal specifications. It assumes
that you are familiar with the Z notation. If you are not familiar with Z, there several sources to
learn about Z:

� An Introduction to Z and Formal Specification [4] by Mike Spivey gives a brief introduction
to Z and model-oriented formal specifications.

� Software Development with Z: A Practical Approach to Formal Methods in Software Engi-
neering [5] by J.B. Wordsworth and Z: An Introduction to Formal Methods [6] by A. Diller
are introductory textbooks on formal methods and Z.

� The internet newsgroup comp.specification.z and the World-Wide-Web site
http://www.comlab.ox.ac.uk/archive/z.htmlprovide many pointers to recent
development and materials in the field.

Z is a non-executable but strongly-typed specification language. ZTC is a type-checker for Z, which
determines if there are syntactical and typing errors in Z specifications. There is no compiler for Z.
However, there are tools to animate, or execute, subsets of Z1.

ZTC accepts two forms of input: LATEX with oz or zed packages, and ZSL. Oz[7] and zed[8] are
LATEX packages (style options) developed Paul King and Mike Spivey, respectively, for typesetting
Z in LATEX. ZSL is an ASCII version of Z designed by the author. ZSL is welcome by students
and newcomers of Z who are not familiar with LATEX, so they can write and type-check Z specifica-
tions without the extra hurdle of learning LATEX. Unlike the SGML based Z interchangeable format
proposed by the Z Standard Committee, which is primarily intended for tools not human readers,
ZSL is designed to be readable and try to retain the visual appearance of Z specifications as much as
possible. ZSL is also useful for ASCII based electronic communications, such as e-mail, involving
Z specifications. ZTC can perform translations between LATEX and ZSL. A brief description and
examples of the two input forms are given in Section 2.

If you choose to use the LATEX input form but you should first get familiar with with oz [7] or zed
[8]. Then, read Section 3. If you choose to use ZSL, you can safely skip Section 3, read Section 4,
Section 5 will discuss many advanced and new features in version 2.0. Most of them applies to both
input forms. Use Appendix A as a reference for both input forms.

1ZANS is an experimental tool developed here at the Software Engineering Laboratory, DePaul University, that animates
a subset of Z. ZANS is also freely available and its input format is compatible with that of ZTC. A research project funded
by the National Science Foundation to study and develop tools for design refinement and code synthesis based on Z is also
underway here.

ZTC 2.1 User’s Guide October 2002

1 Introduction 2

This user’s guide describes ZTC version 2.1. ZTC is now available on the following platforms:

� Microsoft Windows 9x, NT, 2000, and XP, and

� Linux

ZTC 2.1 User’s Guide October 2002

2 The Input Forms 3

2 The Input Forms

ZTC accepts tow input forms: LATEX and ZSL. Semantically, ZSL is as expressive as the LATEX form.
However, the LATEX form is more expressive visually. ZTC can translate a Z specification written
in ZSL to an equivalent one in LATEX, and vice versa. Using the LATEX form will allow you to fine
tune the visual appearance of the specifications, and to take advantage of some features specially
designed for LATEX (see sections 5.3 and 5.6.)

The following is a segment of a Z specification:

�
NAME � INFO �

DataDictionary
dict � NAME �� INFO
defined ��� NAME

defined � dom dict

ZTC accepts most of the LATEX source files as is. However, some rules must be observed in order to
type-check the input files. These rules are discussed in Section 3. The LATEX input file for the above
specification is given below:

\begin{spec}

\begin{zed}
[NAME, INFO]

\end{zed}

\begin{schema}{DataDictionary}
dict: NAME \pfun INFO \\
defined: \power NAME

\where
defined = \dom dict

\end{schema}

\end{spec}

ZSL has two style options: the plain text style and the box style. Using the ZSL plain text style, the
Z specification above will be written as follows:

ZTC 2.1 User’s Guide October 2002

2 The Input Forms 4

specification

[NAME, INFO]

schema DataDictionary
dict : NAME +-> INFO;
defined : P NAME

where
defined = dom dict

end schema

end specification

The box style of ZSL gives a graphical look to schema and generic boxes that resembles the original
Z style. The following is the same specification in ZSL box style:

specification

[NAME, INFO]

--- DataDictionary ---------------------
| dict : NAME +-> INFO;
defined : P NAME
defined = dom dict
--

end specification

The ZSL input form is discussed in detail in section 4.

The complete specification of DataDictionary, as well as several other sample specifications in all
three input styles are included in the ZTC distribution.

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 5

3 The LATEX Input — Basics

Zed and oz are two LATEX packages for typesetting Z specifications. Z specifications prepared
using oz or zed can be type checked by ZTC, perhaps with some minor modifications. To use
the LATEX input form, some knowledge of LATEX is necessary. If you are not familiar with LATEX
but want to learn about LATEX, consult Leslie Lamport’s LATEX: A Document Preparation System [9].
Otherwise, skip this section, and use ZSL instead. You will have to get familiar with zed or oz
before using ZTC. The zed package is described in Mike Spivey’s A Guide to the zed Style Option
[8], and the oz package is described in Paul King’s Printing Z and Object-Z LATEX Documents[7].

3.1 Choosing a package

ZTC now accepts specification written with either zed and oz packages. The two packages are
mostly compatible but not completely. The oz package has better mnemonic names and includes
all the ����� mathematical symbols, which will be handy when you use user-defined symbols in
your specification. Furthermore, oz can be used to typeset Object-Z specifications as well as plain
Z, although ZTC only accepts plain Z. Another difference of the two packages is due to the fact
that LATEX is currently undergoing a transition from LATEX2.09 to LATEX2 � . The zed package is not
compatible with the current standard LATEX2 � , while the oz package is distributed as a supported
component of LATEX2 � .

ZTC supports the following package-selection modes:

a) zed mode.
Use the zed package. You can only use the commands defined in zed.

b) oz-zed compatible mode.
Use the oz package. You can use all the commands defined in oz and zed. Incompatibilities

are resolved in favor of zed.

c) oz native mode.
Use the oz package. You can only use the commands defined in oz.

The incompatible commands in zed and oz are listed in Figure 1.

symbol zed command oz command
�

\empty \emptyset�� \defs \sdef
� � == \defs

Figure 1: Incompatible commands between zed and oz.

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 6

In the LATEX preamble, you must
1. indicate whether zed or oz package is used;

2. use the ztc package included in the distribution; (ztc must fol-
low zed or oz.)

3. inform ZTC about your package selection decision using ZTC
pragmas:

� zed mode:
None. This is the default mode.

� oz-zed compatible mode:
\zedcompatible
%% oz

� oz native mode:
%% oz-native

Here are same examples of LATEX preamble.

1. Using zed with LATEX2.09.

\documentstyle[zed,ztc]{article}

2. Using oz-zed compatible mode with LATEX2 � .

\documentclass{article}
\usepackage{oz,ztc}
\zedcompatible
%% oz

3. Using oz native mode with LATEX2 � .

\documentclass{article}
\usepackage{oz,ztc}
%% oz-native

Note that, the oz and oz-native pragmas must be in the preamble for them to take effect.

3.2 Lexical conventions

The lexical elements of LATEX input form can be classified into the following categories:

a) LATEX commands, which begin with a backslash (\), such as \begin, \power 1.

b) Keywords, such as schema, zed;

c) Identifiers, such as DataDictionary, name?;

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 7

d) Integers, such as 0, 65535;

e) Symbols, which consists of one or more non-alphanumeric characters, such as: :, ==, ::=.

The LATEX input form is case sensitive.

The rules for forming identifiers in the LATEX input form are the following:

� An identifier consists of a word followed by a possibly empty dec-
oration.

� A word can be in one of the following forms:

– a letter followed by zero or more letters, digits, or under-
scores (\);

– a LATEX command, i.e., a back slash (\) followed by letters.

� A decoration is sequence of zero or more stroke characters, ’, ?,
!, or subscriptions.

Here are some examples of legal identifiers in LATEX input form:

ident � ident1
ident � ident_2
ident �� ident’_0
� \varepsilon
max size max_size

The only primitive data type Z supports is the integer type. ZTC recognizes signed and unsigned
decimal integers.

The mnemonic names of Z symbols are listed in Appendix A.

3.3 Structure of specifications

ZTC can directly type check LATEX source files containing Z specifications.

Each specification must be enclosed by one of the following environ-
ments:

� \begin � spec �����	� \end � spec �
� \begin � document ������� \end � document �

Everything outside these environments are ignored by ZTC.

The spec environment can occur multiple times and can be nested. This is useful when you want
to put several specifications in a single document, or to divide a large specification into separate
files and type check them separately. The document environment can occur only once in a LATEX
document, and must be the outer-most environment. The document environment is retained for
backward compatibility with version 1.3.

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 8

3.4 Formal and informal text

A Z specification consists of formal and informal text. ZTC will type check the formal text and
ignore the informal text.

3.4.1 Formal environments

Formal text must be enclosed in one of the following formal environ-
ments:

� \begin � axdef �����	� \end � axdef �
� \begin � gendef ������� \end � gendef �
� \begin � schema ������� \end � schema �
� \begin � syntax ������� \end � syntax �
� \begin � zed � ���	� \end � zed �

Anything outside these formal environments are considered informal text
and ignored.

Specifically, formulae enclosed in $...$, \(...\), and \[...\] are considered informal textNote!

and ignored.

Usage of these formal environments are briefly illustrated below.

The axdef environment is used to define the axiom boxes.

\begin{axdef}
MaxSize: \nat

\where
MaxSize \leq 65535

\end{axdef}

MaxSize � �

MaxSize ���������	�

The gendef environment is used to define the generic boxes.

\begin{gendef}{X,Y}
First: X \cross Y \fun X

\where
\forall x: X; y: Y @ First(x,y) = x

\end{gendef}

�
X � Y �

First � X
 Y � X
�

x � X � y � Y � First x � y � � x

The schema environment is used to define the schema boxes.

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 9

\begin{schema}{InsertOk}
\Delta DataDictionary \\
name? : NAME \\
info? : INFO \\
resp! : Response

\where
name? \notin defined \\
\# defined < MaxSize \\
dict’ = dict \cup \{
name? \mapsto info? \} \\

resp! = Success
\end{schema}

InsertOk�
DataDictionary

name � � NAME
info � � INFO
resp � � Response

name ���� defined�
defined � MaxSize

dict � � dict � � name � �� info � �
resp � � Success

The syntax environment is used to define free types.

A syntax environment contains a sequence of syntax rules separated by the \also command.

\begin{syntax}
OP & ::= & plus | minus | times | divide

\also
EXP & ::= & const \ldata \nat \rdata \\

& | & binop \ldata OP \cross
EXP \cross EXP \rdata

\end{syntax}

OP � � � plus 	 minus 	 times 	 divide

EXP � � � const

 ��� �
	 binop

 OP
 EXP
 EXP

� �

The zed environment is used to define other paragraphs in Z, including given sets, schema defini-
tions, equivalence definitions, and predicates. Short free type definitions can also be included in
the zed environment. A zed environment may contain several paragraphs. The paragraphs in a
zed environment must be separated by the \also command.

\begin{zed}
[ADDR, PAGE]

\also
DataDictInit \defs [DataDictionary’ | \\

\t3 defined’ = \empty]
\also

DATABASE == ADDR \fun PAGE
\also

\exists n: NAME @ birthday(n) \in December
\also

REPORT ::= ok | unknown \ldata NAME \rdata
\end{zed}

�
ADDR � PAGE �

DataDictInit
�� �

DataDictionary �	
defined � � � �

DATABASE � � ADDR � PAGE�
n � NAME � birthday n � � December

REPORT � � � ok 	 unknown

 NAME
� �

The formal environments may not be nested.

You may use eithersyntax and zed environments to define free types, but they not inter-changable.Note!

Use the syntax environment for the vertical format, and use the zed environment for the horizon-
tal format.

3.4.2 Comments inside formal environments

Sometimes, you may want to put comments inside the formal environments. This can be accom-
plished by using \comm or \remark commands

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 10

Informal comments or remarks inside formal environments can be intro-
duced as follows:

� \comm � informal text � ;
� \remark � informal text � ;

ZTC ignores the arguments of these two commands.

These two commands are synonymous.

3.4.3 Ignore formal environments

Sometimes, you may want ZTC to ignore some formal text without deleting them. Formal text can
be commented out using comment or nocheck environments.

Anything enclosed in the following environments, including formal envi-
ronments, will be ignored by ZTC.

� \begin � comment ������� \end � comment �
� \begin � nocheck ������� \end � nocheck �

It is no longer necessary to comment out informal text outside formal environments.Note!

3.5 White spaces

ZTC recognizes some commonly used LATEX spacing commands and ignores them.

ZTC ignores the following LATEX commands inside formal environments:
� spacing commands: ˜, \,, \!, \:, \;, � �
� blank lines.

3.6 Separators

Separator are used to separate between declarations or predicates in the axiom, generic, and schema
boxes.

ZTC treats the following commands as separators in axdef, gendef,
and schema environments:

� semi-colon (;)

� the \also command, and

� the LATEX linebreaking commands, \\ and \linebreak.

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 11

Omission of separators between declarations or predicates will cause syntax and/or typing errors.
However, extra separators cause no harm.

The following two examples are equivalent semantically, but differ in their printout.

a) Linebreak as separators:

\begin{schema}{InsertOk}
\Delta DataDictionary \\ name? : NAME \\
info? : INFO \\ resp! : Response

\where
name? \notin defined \\
\# defined < MaxSize \\
dict’ = dict \cup

\{ name? \mapsto info? \} \also
resp! = Success

\end{schema}

InsertOk�
DataDictionary

name � � NAME
info � � INFO
resp � � Response

name ���� defined�
defined � MaxSize

dict � � dict � � name � �� info � �
resp � � Success

b) Semi-colon as separators:

\begin{schema}{InsertOk}
\Delta DataDictionary; name? : NAME \\
info? : INFO; resp! : Response

\where
name? \notin defined ;
\# defined < MaxSize \\
dict’ = dict \cup

\{ name? \mapsto info? \} \\
resp! = Success

\end{schema}

InsertOk�
DataDictionary � name � � NAME

info � � INFO � resp � � Response

name ���� defined � � defined � MaxSize
dict � � dict � � name � �� info � �
resp � � Success

The separator rule above does not apply to the syntax and zed environments.Note!

Paragraphs in a zed environment and free type definitions in a syntax
environment must be separated by the \also command.

3.7 Line continuing command

Sometimes, you may want to break a line without terminating the current declaration or predicate,
e.g., when you have a long predicate that can not fit into a single line. You can accomplish this by
using the line continuing command.

A line continuing command is a linebreaking command followed by a
TAB command, which is one of the following:

\t0, \t1, \t2, \t3, \t4, \t5, \t6, \t7, \t8, \t9.
Line continuing commands are treated as white spaces by ZTC.

When you print out specifications, a continuation command will cause a linebreak and an indenta-
tion of the continuing line. The amount of space indented is determined by the TAB command, with

ZTC 2.1 User’s Guide October 2002

3 The LATEX Input — Basics 12

\t1 indents the least and \t9 the most amount of space. The TAB command is not only neces-
sary for ZTC to perform type-checking properly, but also desirable for enhancing the readability of
specifications. The following example shows the proper use of the line continuing command.

\begin{gendef}{X,Y}
First: X \cross Y \fun X

\where
\forall x: X; y: Y @ \\

\t1 First(x,y) = x
\end{gendef}

�
X � Y �

First � X
 Y � X
�

x � X � y � Y �

First x � y � � x

When the indentation is not desired, you can use \t0 as in the example below. It is equivalent to
the previous one, however the continuing line is not indented and the printout is less readable.

\begin{gendef}{X,Y}
First: X \cross Y \fun X

\where
\forall x: X; y: Y @ \\

\t0 First(x,y) = x
\end{gendef}

�
X � Y �

First � X
 Y � X
�

x � X � y � Y �

First x � y � � x

The continuation commands can also be used in the zed environment to break a long paragraph as
in the following example.

\begin{zed}
Insert \defs InsertOk \lor InsertOverflow \\
\t1 \lor InsertAlreadyDefined
\end{zed}

Insert
�� InsertOk � InsertOverflow

� InsertAlreadyDefined

3.8 File inclusion

ZTC allows you to break a long specification into several input files and then include them into a
master file.

You may use either of the following commands to include a file:
� \input � filename �
� \include � filename �

The complete filename must be specified in the file inclusion commands. The file inclusion com-
mands can be nested. The maximum depth of inclusion is 16.

ZTC 2.1 User’s Guide October 2002

4 The ZSL Input — Basics 13

4 The ZSL Input — Basics

4.1 Lexical conventions

The lexical elements of ZSL can be classified into following categories:

� Keywords, such as schema, where;
� Identifiers, such as DataDictionary, name?;
� Integers, such as 0, 65535;
� Bars, which are used in the box style, such as =========, |;
� Symbols, which consists of one or more non-alphanumeric characters, such as: :, ==, ::=.

ZSL is case sensitive.

The rules for forming identifiers are the following:
� An identifier consists of a word followed by a possible empty dec-

oration.

� A word must begin with a letter and followed by letters, digits, or
underscores ().

� A decoration consists of one or more stroke characters, ’, ?, !, or
subscriptions.

� A subscription consists of an underscore followed by a digit.

Here are some examples of legal identifiers in ZSL:

ident1 ident_2 ident’_0

The only primitive data type Z supports is the integer type. ZTC recognizes signed and unsigned
decimal integers.

The bars are used in the box style to form axiom, generic, and schema boxes. There are three types
of bars:

� vertical bars: |;
� horizontal single bars: ---------;
� horizontal double bars: =========.

The length of a horizontal bar must be at least 3. The actual length of a
horizontal bar is insignificant.

ZSL defines ASCII equivalents for all the mathematical symbols used in Z. They are listed in Ap-
pendix A.

ZTC 2.1 User’s Guide October 2002

4 The ZSL Input — Basics 14

4.2 Structure of specifications

A Z specification consists of a sequence of paragraphs.

A ZSL input file consists of a sequence of paragraphs enclosed by one of
the following specification environment

� specification ... end specification, or

� spec ... end spec
The paragraphs must be separated one or more blank lines.

You can have multiple specification environments in a ZSL file. Specification environments can also
be nested. Everything outside specification environments are ignored.

A complete ZSL input is shown earlier in Section 2 (page 3.)

Paragraphs can be classified into box or non-box paragraphs. A box paragraph is either an axiom
box, a generic box, or a schema box. All other paragraphs are called non-box paragraphs.

4.3 Informal text and comments

ZSL allows mixed informal text and formal specifications in ZSL input files. Unlike most program-
ming languages, in which indentation and vertical alignment are insignificant, in ZSL, indentation
and vertical alignment are used to distinguish formal text form informal text.

ZTC treats any line beginning with a TAB as formal text, and any line
not beginning with a TAB as informal text.
ZTC also treat anything following a percentage sign (%) up to the end of
the line as informal text and ignores them.

The following example shows a ZSL schema with comments:

schema DataDictionary
dict : NAME +-> INFO;
defined : P NAME

where
defined = dom dict;
defined <= MaxSize

end schema
defined is the set of all terms defined in the
data dictionary.

4.4 Box paragraphs

The plain text style and box style of ZSL are only different for box paragraphs, and they are identical
for all other syntactical structures. For the box paragraphs, the text style uses keywords, such as

ZTC 2.1 User’s Guide October 2002

4 The ZSL Input — Basics 15

schema ... where ... end schema, to define the syntactical structures, whereas the
box style uses horizontal and vertical bars to define the syntactical structures.

An axiom box can be written in the following forms:

Plain text style: global
MaxSize : N

axiom
MaxSize <= 65535

end axiom

Box style: | MaxSize : N
|----------
| MaxSize <= 65535

A generic box can be written in the following forms:

Plain text style: generic [X,Y]
First: X & Y --> X

where
forall x: X; y: Y @ First(x,y) = x

end generic

Box style: === [X,Y] ================================
First: X & Y --> X
forall x: X; y: Y @ First(x,y) = x
--

A schema box can be written in the following forms:

Plain text style: schema InsertOk
Delta DataDictionary;
name? : NAME;
info? : INFO;
resp! : Response

where
name? notin defined;
defined < MaxSize;
dict’ = dict || { name? -> info? };
resp! = Success

end schema

Box style: --- InsertOk ---------------------------
| Delta DataDictionary;
| name? : NAME;
| info? : INFO;
resp! : Response
name? notin defined;
defined < MaxSize;
dict’ = dict
resp! = Success
--

When using the plain text style, spaces following the leading TAB of each line are allowed and they
are ignored. However, when using the box style, spaces following the leading TAB are not allowed.

ZTC 2.1 User’s Guide October 2002

4 The ZSL Input — Basics 16

When using the box style, each line must begin with a TAB, and the box
must immediately follow the TAB. No space in between is allowed.

This ensures that all the boxes are aligned vertically. The length of horizontal bars must be at least
that 3. Other than that the length of the horizontal bars is insignificant.

4.5 Non-box paragraphs and expressions

The text and box styles of ZSL are identical for non-box paragraphs and expressions The non-box
paragraphs include given sets, schema definition, equivalence definition, predicates, and free types.
Non-box paragraphs can be written as follows:

[ADDR, PAGE]

DataDictInit is [DataDictionary’ |
defined’ = {}]

DATABASE == ADDR --> PAGE

exists n: NAME @ birthday(n) in December

OP ::= plus | minus | times | divide

EXP ::= const << N >>
| binop << OP & EXP & EXP >>

Consult Appendix A for the syntactical structures of non-box paragraphs. ZSL defines ASCII equiv-
alents for all the mathematical symbols used in Z. They are also listed in Appendix A.

4.6 Separators

Separator are used to separate between declarations or predicates in a sequence of declarations or
predicates in the axiom, generic, and schema boxes. Omission of separators between declarations
or predicates will cause syntax and/or typing errors.

A sequence of declarations and predicates must be separated by semi-
colons (;).

The example on the left is incorrect, since a new line is not considered as a separator in ZSL. The
correct input is shown on the right.

ZTC 2.1 User’s Guide October 2002

4 The ZSL Input — Basics 17

schema InsertOk
Delta DataDictionary
name? : NAME
info? : INFO
resp! : Response

where
name? notin defined
defined < MaxSize
dict’ = dict || { name? -> info? }
resp! = Success

end schema

schema InsertOk
Delta DataDictionary;
name? : NAME;
info? : INFO;
resp! : Response

where
name? notin defined;
defined < MaxSize;
dict’ = dict || { name? -> info? };
resp! = Success

end schema

4.7 File inclusion

ZSL allows you to break a long specification into several input files and then include them into a
master file.

You may use either of the following commands to include a file:
a) input filename

b) include filename

The complete filename must be specified in the file inclusion commands. The file inclusion com-
mands can be nested. The maximum depth of inclusion is 16.

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 18

5 Advanced Features

All the features described in this section are new in version 2.0. Most of them apply to both input
forms.

5.1 ZTC pragmas

ZTC recognizes a number of pragmasto support non-standard extension to Z and allow you to exert
fine control over the behavior of ZTC.

A pragma begins with double percentage signs (%%) followed by a single
space and the pragma name. Zero or more arguments separated by spaces
may follow.

Anything following a pragma on the same line will be considered parameters of the pragma, not part
of formal text.

We have already seen the oz and oz-native in section 3.1.

%% oz
%% oz-native

Neither of them has arguments.

5.2 User-defined symbols

ZTC allows user-defined symbols. You can define

� infix relational symbols,

� prefix relational symbols,

� infix generic symbols,

� prefix generic symbols, and

� infix function symbols.2

2Postfix function symbols can be defined using LATEX macros discussed in the next section.

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 19

User-defined relational and generic symbols are defined as follows:
� infix relational symbol:
%% inrel symbol

� prefix relational symbols:
%% prerel symbol

� infix generic symbols:
%% ingen symbol

� prefix generic symbols:
%% pregen symbol

A symbol is either a word or 1 to 4 character combinations of the fol-
lowing characters:

\ @ / < > = & | - + * : . { } ()
[]
˜ (ZSL only)

Here are some examples of user-defined relational and generic symbols.

%% inrel \prec
%% prerel \odd
%% pregen \smallpower

When define a infix function symbol, ZTC also allow you to specify its priority and associativity.

User-defined infix function symbols are defined as follows:
%% infun � associativity � � priority � symbol

where

� � associativity � is either l, for left associative, or r, for right
associative.

� � priority � is a digit from � to � indicating the priority of the sym-
bol.

Priority 0 is the lowest and 7 the highest. The priority of the pre-defined infix function symbols are
shown in Figure 2. All the pre-defined infix function symbols are left-associative.

Here are some examples of user-defined infix function symbols.

%% infunl4 \times
%% infunr0 \myop

The inrel, prerel, ingen, pregen, and infun pragmas only define the lexical categories ofNote!

the user-defined symbols. You have to define the type and meaning of the symbols before you can

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 20

Priority 1 ��
Priority 2 �	�
Priority 3 ��� ������� � -
Priority 4 	�
��������
����������� �
Priority 5 !#"
Priority 6 $�% �$ �%

Figure 2: The priority of the pre-defined infix function symbols

use them. You may also have to define their visual appearances using \def or \newcommand, if
they are not already defined.

Figure 3 shows an example of user-defined symbols.

Any identifier Rel that denotes a relation can be converted to a infix relational symbol Rel.

The infix relational symbol corresponding to Rel is written as
\inrel � Rel �

Here is an example.

\begin{axdef}
divides: \nat_1 \rel \nat_1

\where
\forall x, y : \nat_1 @ x \inrel{divides} y

\iff x \mod y = 0
\end{axdef}

divides � �'&)(�*&
�

x � y � � & � x divides y + x ���,
 y � �

5.3 Using LATEX macros

ZTC allows Z expressions to be written in LATEX macro syntax, so that they can be typeset in anyway
you like.

The following LATEX macro
\xyz � exp

& � � exp � � �	��� � expn �
is interpreted by ZTC as

\xyz(exp
& � exp � �	����� � expn)

This feature can be used to define so-called outfix or surround-fix symbols as shown below:

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 21

%% inrel \prec
%% prerel \odd
%% pregen \smallpower
%% infunl4 \times
\def \odd {\mathsf{Odd}˜}
\def \smallpower {\bbold S˜}

\begin{axdef}
_ \prec _ : \num \rel \num \\
\odd _ : \power \num \\
_ \times _ : \nat_1 \cross \nat_1

\pfun \nat_1
\where
\forall x, y : \num @

x \prec y \iff x + 1 < y \\
\forall x : \num @

\odd x \iff x \mod 2 = 1 \\
\forall x, y : \nat_1 @

x \times y = x * y
\end{axdef}

\begin{zed}
\smallpower X ==

\{ S : \power X | \# S \leq 10 \}
\end{zed}

� ��� (�
Odd � ���

 � � &
 � & �� � &

�
x � y ��� � x � y + x � � � y�
x ��� � Odd x + x ���,
�� � ��
x � y � �*& � x
 y � x 	 y

�
X � � � S � � X 	 � S � � � �

Figure 3: User-defined symbols.

\def \abs#1 {˜|#1|˜}

\begin{axdef}
\abs{_} : \num \fun \nat
\where
\forall x : \num @
\abs{x} = \zif x \geq 0 \zthen x \\
\t4 \zelse -x
\end{axdef}

	 	 ��� � �
�

x ��� � 	 x 	 � if x � � then x
else � x

This feature can also be used to define postfix function symbols and fractions, etc.

The ignore and null-token pragmas will make LATEX commands disappear.

The effect of the following ignore pragma
%% ignore \xyz

is to make

\xyz � exp
& � � exp � � �	��� � expn �

equivalent to

(exp
& � exp � �	���	� � expn)

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 22

\def\ace {\mathsf{A}}
\def\king {\mathsf{K}}
...
\def\two {\mathsf{2}}
Suppose we ...
\begin{zed}
SUIT ::= \spadesuit | \heartsuit |

\diamondsuit | \clubsuit
\also
RANK ::= \ace | \king | \queen | \jack |

\ten | \nine | \eight | \seven | \\
\t2 \six | \five | \four | \three | \two
\also
Cards == SUIT \cross RANK
\end{zed}
Thus, we can say
\begin{zed}
(\spadesuit, \ace) \in Cards
\end{zed}
Or we can say
\def\card#1#2{#1#2}
%% ignore \card
\begin{zed}
\card{\spadesuit}{\ace} \in Cards
\end{zed}
Is this more fun?

Suppose we are specifying a deck of playing cards.
Each card consists of a suit and a rank. It can be spec-
ified as follows:

SUIT � � ��� 	�� 	�� 	��
RANK � � � A 	 K 	 Q 	 J 	 10 	 9 	 8 	 7 	

6 	 5 	 4 	 3 	 2
Cards � � SUIT
 RANK

Thus, we can say

�� � A � � Cards

Or we can say

� A � Cards

Is this more fun?

Figure 4: The Ignore pragma.

Figure 4 shows an example of using the ignore pragma.

The effect of the null-token pragma is to discard a parameterless
LATEX command.

The null-token pragma is useful in situations such as you want to customize the layout of the
schemas. The example in Figure 5 shows how to center the predicates in schemas.

5.4 Liberal mode

ZTC 2.0 introduces the liberal mode, which is a deviation from the Z notation defined in ZRM.
However, I believe that it is quite reasonable.

In the liberal mode, declarations of variables can be omitted as long
as their types can be deduced from the context up to and including the
current paragraph.

By default, ZTC is in the strict mode that follows the strict rules given in ZRM.

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 23

\def \bstack {\begin{array}{c}}
\def \estack {\end{array}}
%% null-token \bstack
%% null-token \estack

\begin{schema}{S}
x, y, z : \nat

\where
\bstack
x \geq 0 \\
y \geq x \geq z
\estack

\end{schema}

S
x � y � z � �

x � �
y � x � z

Figure 5: Null-token pragma.

You can switch between the strict and liberal modes using the following
pragmas:

� %% liberal: to enter the liberal mode.

� %% strict: to enter the strict mode.

You can also use the -L switch from the command line to set the default mode to the liberal mode.

A trivial example of using the liberal mode is the following:

%% liberal

\begin{zed}
x = 2 \also
y = x + 1 \also
u = v \cup \{ 1 \} \also
s = \{ x, y \} \also
f (x, y) = s
\end{zed}

x � �
y � z � �
u � v � � � �
s � � x � y �
f x � y � � s

This specification is illegal in strict mode but legal in liberal mode. The variables are used without
declaration but their types can be easily deduced from the context.

The following is a more sensible use of liberal mode. This is an excerpt from Susan Stepney’s High
Integrity Compilation[10], in which she specified the semantics of compilers using Z. She wrote:

The definitions of the semantics functions are quantified over all the variables appearing
on the left-hand side of the equation. ...

The continual occurrence of such quantifications tends to clutter the specification. So
this is abbreviated, by omitting the declarations of all the arguments of the meaning
functions, whose types can easily be deduced. (p. 23)

In fact, such abbreviations are not only reasonable, but also very common and widely accepted in
literatures. This example also illustrates the LATEX macro feature of ZTC. Using

� � �	��� � � instead of
 �	��� � to enclose the arguments is a standard convention when writing denotation semantics. Using

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 24

the strict syntax required by Z will be less straightforward and socially unacceptable. With the
LATEX macros, you can follow the accepted conversions in the printout, and still type-check your
specifications.

So instead of writing the following semantic function in the strict mode:

��������� � � � � � EXPR � State �� �
�
	 ��� ��� � NAME �� �� & �� � � EXPR ��� � OP ��� � State �� ������� � �

number
	 � ��� � 	

� ��������� � �
variable � � ��� ������ ��������� � �
negate � ��� � � ��������� � � � ��� �� ��������� � �
operation � & ��� �� � � � ��� ������ � � � � � ��������� � � & � ��� � ��������� � � � � ��� �

we can write it in the liberal mode as follows:

%% liberal

\def\dop#1{\mathcal{D}_\mathcal{OP}%
\lbag #1 \rbag}

\def\dexpr#1{\mathcal{D}_\mathcal{EXPR}%
\lbag #1 \rbag}

\begin{axdef}
\dexpr{_} : EXPR \fun State \pfun \num

\where
\dexpr{number˜\chi} \sigma = \chi \\
\dexpr{variable˜\xi} \sigma = \sigma \xi \\
\dexpr{negate˜\epsilon} \sigma =

- (\dexpr{\epsilon} \sigma) \\
\dexpr{operation(\epsilon_1, \omega,

\epsilon_2)}
\sigma = \\

\t1 \dop{\omega}(\dexpr{\epsilon_1} \sigma,
\dexpr{\epsilon_2} \sigma)

\end{axdef}

� ������� � � � � � EXPR � State �� �
��������� � �

number
	 � ��� � 	

��������� � �
variable � � ��� �������������� � �
negate � ��� � � ��������� � � � ��� ���������� � �
operation & �!� �� � � � ��� ������ � � � � � ��������� � � & � ��� � ��������� � � � � ��� �

A more complete version of this example is included in the ZTC distribution.

5.5 Forward declaration of types

ZTC allows you to forward declare a type as a given set and then redefine
it later.

A warning message will be issued for each redefinition.

5.6 Obtain type information

ZTC allows you to obtain type information of any expression.

ZTC 2.1 User’s Guide October 2002

5 Advanced Features 25

The typeof macro will print out the type of the its argument.
\typeof � exp �

This feature is enabled by the -T switch and only available in the LATEX input.

5.7 Verbosity control

You can control the verbosity of ZTC using the verbose pragma or the V switch from the command
line.

The verbose pragma sets the verbosity value from 0 to 9.
%% verbose [0-9]

Verbosity value 0 is the least verbose and 9 is the most verbose. The default verbosity is 5.

ZTC 2.1 User’s Guide October 2002

6 Running ZTC 26

6 Running ZTC

ZTC supports a number of command line options.

ztc [-I [tl]] infile [options]

On extended MS-DOS, use ztc32 instead of ztc.

The input file name is required. It is no longer necessary to specify the input form when the full
file name is given. ZTC will determine the input form automatically. You can still specify the input
form explicitly with the -I switch, then the extension of the input file name may be omitted:

-It LATEX form, the default extension is zed.

-Il ZSL form, the default extension is zsl.

The options of ZTC are:

-F Enable the flying-erase mode
This switch instructs ZTC to erase the paragraphs from the memory as soon as they have

been type checked. It is particularly useful when you are running the standard DOS version.
It increases the capacity of ZTC.

-L Set the default mode to the liberal mode.

-M[0-9] Select mathematical toolkit library.
-Mn instructs ZTC to load mathn.zed for LATEX input and mathn.zbx for ZSL input. The

default mathematical toolkit library is math1.zed and math1.zbx.

Library math0 contains the basic mathematical toolkit defined in ZRM. Library math1 con-
tains additional declarations of float, boolean, char, and string, see Appendix B.

-Mlibfile Select mathematical toolkit library.
This switch instructs ZTC to load libfile.zed for LATEX input and libfile.zbx for ZSL input.

-M- Disable mathematical toolkit library.
This switch instructs ZTC not to load any mathematical toolkit library.

-O[tlb] outfile Translate the input file into a given output form and save the result to outfile. The
extension of the output filename may be omitted

-Ot translate the input file to the LATEX form, the default extension is zed.

-Ol translate the input file to the ZSL plain text form, the default extension is zsl.

-Ob translate the input file to the ZSL box form, the default extension is zbx.

When the translation is performed, only the formal text is translated, and all the informal text
is deleted.

-S Suppress type-checking.

ZTC 2.1 User’s Guide October 2002

6 Running ZTC 27

-T Generate a type report:
This switch generates a type report that contains the type information of all the names in the

specification. The type report will be written in a file whose name is the same as the input file
name with extension .typ.

-V[0-9] Set verbosity
The default verbosity is 5. 0 is the least verbose and 9 the most.

The single-letter options, F, L, S, and T, can be grouped togather, such as -LT.

Every time ZTC is invoked, a log file will be written. It contains all the messages sent to the standard
output. The name of the log file is the same as the input file name with the extension .log.

Common usages:

1. ZTC spec.zed
Type-checking LATEX input file spec.zed.

2. ZTC spec.zsl -T
Type-checking ZSL input file spec.zsl, and requesting a type report.

3. ZTC spec.zed -Ob spec
Translating LATEX input file spec.zed to ZSL box style. The output file will be named
spec.zbx, and type-checking is performed on the input file.

4. ZTC spec.zsl -Ot spec -S
Translating ZSL input file spec.zsl to LATEX style. The output file will be named spec.zed,
and type-checking is suppressed.

ZTC 2.1 User’s Guide October 2002

7 Installation 28

7 Installation

ZTC runs on the following platforms:

� Microsoft Windows 9x, NT, 2000, and XP, and

� Linux

7.1 The distribution package

The ZTC 2.1 distribution package contains the following files:

Documentation (all platforms)
README, a brief overview
guide.ps, this guide in PostScript
ztc.1, a man page

Executable files (one of the following sets)
ztc, for Linux
ZTC.EXE, for Windows/MS-DOS

Library files (all platforms)
math0.zed, for LATEX input
math0.zbx, for ZSL input
mathoz.zed, for LATEX input using oz package

LATEX style file (all platforms)
ztc.sty, for LATEX input

Sample Z specification files (all platforms)
datadict.zed, datadict.zsl, datadict.zbx

A simple data dictionary in three different input styles: LATEX ZSL plain text style,
and ZSL box style.

liberal.zed

A more complete version of the example on page 24 illustrating the liberal mode
and LATEX macro syntax for Z expressions.

bridge.zed

Some basic rules of bidding in contract bridge.

Registration form (all platforms)
register.txt, please send this in via e-mail.

ZTC 2.1 User’s Guide October 2002

7 Installation 29

7.2 Installing Windows/MS-DOS version

Step 1. Create a new directory on your hard drive for ZTC, say C:\ZTC.

Step 2. Copy the executable file ZTC.EXE to \ZTC.

Step 3. Copy the data files MATH0.ZED, MATH0.ZBX, and MATHOZ.ZED to \ZTC. (Alterna-
tively, you can put them in the same directory where your specifications resides. Then you
don’t need to set ZLIBPATH.)

Step 4. If you use the LATEX input form, copy the LATEX style file ZTC.STY to the TEX input di-
rectory. If you use EmTEX it will be C:\EMTEX\TEXINPUT. You need to have zed or oz
style package installed as well. (Alternatively, you can put it in the same directory where your
specifications reside.)

Step 5. Update AUTOEXEC.BAT file by appending the following lines:

SET PATH=%PATH%;C:\ZTC;
SET ZLIBPATH=C:\ZTC

7.3 Installing Linux version

Assume that the executable directory is /usr/local/bin, and the data directory is usually
/usr/local/lib.

Step 1. Copy the executable file ztc to /usr/local/bin.

Step 2. Copy the data file math0.zed, math0.zbx, and mathoz.zed to /usr/local/lib.
(Alternatively, you can put them in the same directory where your specifications resides. Then
you don’t need to set ZLIBPATH.)

Step 3. If you use the LATEX input form, copy the LATEX style file ztc.sty to the TEX input di-
rectory, probably /usr/local/lib/texmf/tex/latex2e depending on your TEX in-
stallation and LATEX version. You need to have zed or oz style package installed as well.
(Alternatively, you can put it in the same directory where your specifications reside.)

Step 4. Make sure /usr/local/bin is in your search path.

Step 5. Set the environment variable ZLIBPATH to /usr/local/lib.

In csh and tcsh do:

setenv ZLIBPATH /usr/local/lib

In bash, ksh, and sh do:

ZLIBPATH=/usr/local/lib; export ZLIBPATH

You may want to put this in your shell initialization script.

ZTC 2.1 User’s Guide October 2002

8 Registration and Bug Reports 30

8 Registration and Bug Reports

Please fill out the Registration Form included in the distribution package, and email it to

jia@cs.depaul.edu

You will receive information regarding new releases of ZTC and other tools for Z.

Comments on ZSL and ZTC are greatly appreciated. Send your comments and bug reports to the
same address above. When filing a bug report, please include the following information:

a) hardware platform and operating system;

b) version of ZTC;

c) input file;

d) command line used to invoke ZTC.

ZTC 2.1 User’s Guide October 2002

References 31

References

[1] J.M. Spivey, The Z Notation, A Reference Manual, 2nd edition. Prentice Hall International,
1992.

[2] I. Hayes (ed.), Specification Case Studies, Prentice Hall International, 2nd edition, 1993.

[3] I. Houston, and S. King, “CICS Project: Experiences and Results From the Use of Z in IBM”,
Proc. VDM’91 – Formal Software Development Methods, LNCS No. 552, pp. 588-596, 1991.

[4] J.M. Spivey, “An Introduction to Z and Formal Specification,” Software Engineering Journal,
Vol. 4, No. 1, January 1989, pp. 40-50.

[5] J.B. Wordsworth, Software Development with Z: A Practical Approach to Formal Methods in
Software Engineering, Addison-Wesley, 1992.

[6] A. Diller, Z: An Introduction to Formal Methods, 2nd edition, John Wiley & Sons, 1994.

[7] P. King, Printing Z and Object-Z LATEX Documents, 1990. Included in LATEX2 � distribution.
Available at CTAN cites.

[8] J.M. Spivey, A guide to the zed style option, 1990. Available via anonymous FTP at
ftp.comlab.ox.ac.uk.

[9] L. Lamport, LATEX: A Document Preparation System, 2nd edition, Addison-Wesley, 1994.

[10] S. Stepney, High Integrity Compilation, Prentice Hall, 1993.

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 32

A LATEX and ZSL Input Notations

A.1 Paragraphs

A.1.1 Axiom Box

D
& � �	��� � Dm

P
& � �	��� � Pn

LATEX input:

\begin{axdef}
D_1; ... ; D_m

\where
P_1; ... ; P_n

\end{axdef}

ZSL input – text style:

global
D1; ... ; Dm

axiom
P1; ... ; Pn

end axiom

ZSL input – box style:

D1; ... ; Dm
P1; ... ; Pn

D
& � �	��� � Dm

LATEX input:

\begin{axdef}
D_1; ... ; D_m

\end{axdef}

ZSL input – text style:

global
D1; ... ; Dm

end global

ZSL input – box style:

| D1; ... ; Dm

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 33

P
& � ���	� � Pn

LATEX input:

\begin{zed}
P_1; ... ; P_n

\end{zed}

ZSL input

axiom
P1; ... ; Pn

end axiom

A.1.2 Schema Box

S
D
& � �	��� � Dm

P
& � �	��� � Pn

LATEX input:

\begin{schema}{S}
D_1; ... ; D_m

\where
P_1; ... ; P_n

\end{schema}

ZSL input – text style:

schema S
D1; ... ; Dm

where
P1; ... ; Pn

end schema

ZSL input – box style:

--- S --------------------
D1; ... ; Dm
P1; ... ; Pn

A.1.3 Generic Schema Box

S
�
X
& �	����� � Xk �

D
& � �	��� � Dm

P
& � �	��� � Pn

LATEX input:

\begin{schema}{S[X_1,...X_k]}
D_1; ... ; D_m

\where
P_1; ... ; P_n

\end{schema}

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 34

ZSL input – text style:

schema S [X1, ... , Xk]
D1; ... ; Dm

where
P1; ... ; Pn

end schema

ZSL input – box style:

--- S [X1, ... , Xk] -----
D1; ... ; Dm
P1; ... ; Pn

A.1.4 Generic Box

�
X
& ���	��� � Xk �

D
& � �	��� � Dm

P
& � �	��� � Pn

LATEX input zed:

\begin{gendef}[X_1,...,X_k]
D_1; ... ; D_m

\where
P_1; ... ; P_n

\end{gendef}

LATEX input oz:

\begin{gendef}{X_1,...,X_k}
D_1; ... ; D_m

\where
P_1; ... ; P_n

\end{gendef}

ZSL input – text style:

generic [X1, ... , Xk]
D1; ... ; Dm

where
P1; ... ; Pn

end generic

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 35

ZSL input – box style:

=== [X1, ... , Xk] ==========
D1; ... ; Dm
P1; ... ; Pn

A.1.5 Schema Definition

LATEX zed ZSL
S
�� �

D 	 P � S \defs [D | P] S =ˆ= [D | P]
S is [D | P]

LATEX oz
S \sdef [D | P]

A.1.6 Given Set

LATEX ZSL�
T
& �	����� � Tn � [T_1, ..., T_n] [T1, ..., Tn]

A.1.7 Equivalence Definition

LATEX zed ZSL
id � � Exp id == Exp id == Exp

LATEX oz
id \defs Exp

A.1.8 Free Type Definition

T � � � c
& 	 ���	� 	 cm

	 d
&

 E & � T � � �

	 �	���
	 dn

 En

�
T � � �

LATEX input zed:

\begin{syntax}
T & ::= & c_1 | ... | c_m \\
& | & d_1 \ldata E_1[T] \rdata \\
& | & ... \\
& | & d_n \ldata E_n[T] \rdata

\end{syntax}

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 36

LATEX input oz:

\begin{syntax}
T & \ddef & c_1 | ... | c_m \\
& | & d_1 \lang E_1[T] \rang \\
& | & ... \\
& | & d_n \lang E_n[T] \rang

\end{syntax}

ZSL input:

T ::= c1 | ... | cm
| d1 << E1[T] >>
| ...
| dn << En[T] >>

A.1.9 Schema Expressions

LATEX ZSL�
D 	 P � S \forall D | P @ S forall D | P @ S

oz only � \all D | P \dot S�
D 	 P � S \exists D | P @ S exists D | P @ S

oz only � \exi D | P \dot S� & D 	 P � S \exists_1 D | P @ S exists1 D | P @ S
oz only � \exione D | P \dot S�

D 	 P � [D | P] [D | P]�
S \Delta S Delta S�
S \Xi S Xi S

S
�
T
& ��� � � � Tn � S[T_1,...,T_n] S[T1,...,Tn]

S
�
x
&��

y
& ��� � � � xn

�
yn � S[x_1/y_1,...,x_n/y_n] S[x1/y1,...,xn/yn]

pre S \pre S pre S� S \lnot S not S
S
& �

S � S_1 \land S_2 S1 and S2
S1 /\ S2

S
&

� S � S_1 \lor S_2 S1 or S2
S1 \/ S2

S
&��

S � S_1 \implies S_2 S1 implies S2
oz only � S_1 \imp S_2 S1 => S2

S
& + S � S_1 \iff S_2 S1 iff S2

S1 <=> S2
S
&��

S � S_1 \project S_2 S1 project S2
S1 |\ S2

S 	 v & ���	��� � vn � S \hide (v_1,...,v_n) S hide (v1,...,vn)
oz only � S \zhide (v_1,...,v_n) S \\ (v1,...,vn)

S
&�
�

S � S_1 \semi S_2 S1 semi S2
oz only � S_1 \zcmp S_2 S1 // S2

S
&�

S � S_1 \pipe S_2 S1 pipe S2
oz only � S_1 \zpipe S_2

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 37

A.1.10 Predicates

LATEX ZSL�
D 	 P � Q \forall D | P @ Q forall D | P @ Q

oz only � \all D | P \dot S�
D 	 P � Q \exists D | P @ Q exists D | P @ Q

oz only � \exi D | P \dot S� & D 	 P � Q \exists_1 D | P @ Q exists1 D | P @ Q
oz only � \exione D | P \dot S

let v � � e � P \zlet v==e @ P let v==e @ P
oz only � \zlet v==e \dot P

p
�

q p \land q p and q
p /\ q

p � q p \lor q p or q
p \/ q

p
�

q p \implies q p implies q
oz only � p \imp q p => q

p + q p \iff q p iff q
p <=> q� p \lnot p not p

true true true
TRUE

false false false
FALSE

A.2 Expressions

A.2.1 Lambda Expression

LATEX ZSL
�

D 	 P � E \lambda D | P @ E lambda D | P @ E

A.2.2 Definite Description

LATEX ZSL
� D 	 P � E \mu D | P @ E mu D | P @ E

unique D | P @ E
oz only � \mu D | P \dot E

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 38

A.2.3 Conditional expression

LATEX ZSL
if P then E

&
else E � \zif P \zthen E_1 if P then E1 else E2

\zelse E_2

A.2.4 Local definition

LATEX ZSL
let v � � e � E \zlet v==e @ E let v==e @ E

oz only � \zlet v==e \dot E

A.2.5 Sets

LATEX ZSL
� x & ���	��� � xn � \{ x_1, ... , x_n \} { x1, ..., xn }
� D 	 P � E � \{ D | P @ E \} { D | P @ E }

oz only � \{ D | P \dot E \}
S
&
 S � S_1 \cross S_2 S1 & S2

S
& � S � S_1 = S_2 S1 = S2

S
& �� S � S_1 \neq S_2 S1 /= S2

x � S x \in S x in S
oz only � x \mem S

x �� S x \notin S x notin S
oz only � x \nem S�

\empty {}
S
&��

S � S_1 \subset S_2 S1 subset S2
oz only � S_1 \psubs S_2

S
&��

S � S_1 \subseteq S_2 S1 subseteq S2
oz only � S_1 \subs S_2

� S \power S P S
oz only � \pset S

� & S \power_1 S P1 S
oz only � \psetone S�

S \finset S F S
oz only � \fset S� & S \finset_1 S F1 S
oz only � \fsetone S

S
& � S � S_1 \cup S_2 S1 setunion S2

oz only � S_1 \uni S_2 S1 || S2
S
& � S � S_1 \cap S_2 S1 setint S2

oz only � S_1 \int S_2 S1 && S2
S
& � S � S_1 \setminus S_2 S1 setminus S2

S1 \ S2�
SS \bigcup SS Union SS

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 39

�
SS \bigcap SS Intersection SS

A.2.6 Ordered Pairs

LATEX ZSL
x �� y x \mapsto y x mapsto y

oz only � x \map y x -> y
first P first P first P
second P second P second P

A.2.7 Relations

LATEX ZSL
A
(

B A \rel B A <-> B
A rel B

x R y x \inrel{R} y x _R_ y
dom R \dom R dom R
ran R \ran R ran R
id S \id S id S
R
& � � R � R_1 \comp R_2 R1 comp R2

oz only � R_1 \fcmp R_2 R1 :> R2
R
& � R � R_1 \circ R_2 R1 backcomp R2

oz only � R_1 \cmp R_2 R1 <: R2
R
& $ R � R_1 \dres R_2 R1 dres R2

R1 <| R2
R
& �$ R � R_1 \ndres R_2 R1 dsub R2

oz only � R_1 \dsub R_2 R1 <+ R2
R
& % R � R_1 \rres R_2 R1 rres R2

R1 |> R2
R
& �% R � R_1 \nrres R_2 R1 rsub R2

oz only � R_1 \rsub R_2 R1 +> R2
R
& ! R � R_1 \oplus R_2 R1 oplus R2

oz only � R_1 \fovr R_2 R1 += R2
R 	 S 	 � R \limg S \rimg R (| S |)
R � R \inv R˜

R inversion
R � R \star Rˆ*

oz only � R \rtcl R rtclosure
R � R \plus Rˆ+

oz only � R \tcl R tclosure
Rk R \bsup k \esup Rˆ(k)

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 40

A.2.8 Functions

LATEX ZSL
A �� B A \pfun B A +-> B

A pfun B
A � B A \fun B A --> B

oz only � A \tfun B A fun B
A �� B A \pinj B A >+> B

A pinj B
A � B A \inj B A >-> B

oz only � A \tinj B A inj B
A �� � B A \psurj B A +>> B

oz only � A \psur B A psurj B
A � � B A \surj B A ->> B

oz only � A \tsur B A surj B
A � � B A \bij B A >->> B

A bij B
A � �� B A \ffun B A ++> B

A ffun B
A � �� B A \finj B A >++> B

A finj B

A.2.9 Numbers

LATEX ZSL�
\nat N

Nat� &
\nat_1 N1

oz only � \natone Nat1
� \num Z

oz only � \integer Int
n ��� m n \upto m n upto m

n .. m
x � y x + y x + y
x � y x - y x - y
x 	 y x * y x * y
x � y x = y x = y
x �� y x \neq y x /= y
x
,� � y x \div y x div y
x ���,
 y x \mod y x mod y
x � y x < y x < y
x � y x \leq y x <= y
x � y x > y x > y
x � y x \geq y x >= y
succ x succ x succ x

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 41

�
S \# S # S

min S min˜S min S
max S max˜S max S

A.2.10 Sequences

LATEX ZSL
seq X \seq X seq X
seq & X \seq_1 X seq1 X

oz only � \seqone X
iseqX \iseq X iseq X

 s & �	���	� � sn

�
\langle s_1,...,s_n << s1,...,sn >>

\rangle
oz only � \lseq s_1,...,s_n \rseq

s � t s \cat t s concat t
s ˆ t

head s head˜s head s
last s last˜s last s
tail s tail˜s tail s
front s front˜s front s
rev s rev˜s rev s
s � X s \filter X s filter X

oz only � s \sres X s |- X
X � s X \extract s X extract s

oz only � X \ires s X -| s

� � ss \dcat ss ˆ/ ss
disjoint ss \disjoint ss disjoint ss
ss partition S ss \partition S ss partition S
s
&

in s � s_1 \subseq s_2 s1 subseq s2
oz only � s_1 \inseq s_2

s
&

prefix s � s_1 \prefix s_2 s1 prefix s2
s
&

suffix s � s_1 \suffix s_2 s1 suffix s2
squash s squash˜s squash s

A.2.11 Bags

LATEX ZSL
bag X \bag X bag X� �
a
& �	����� � an � � \lbag a_1,...,a_n \rbag [[a1,...,an]]

x �� B x \inbag B x inbag B
count B count B count B
B
&��

B � B_1 \subbag B_2 B1 subbag B2
B
& � - B � B_1 \bagdiff B_2 B1 bagdiff B2

ZTC 2.1 User’s Guide October 2002

A LATEX and ZSL Input Notations 42

B1 -- B2
n � B n \bagscale B n bagscale B
B " x B \bagcount x B bagcount x
B
& � B � B_1 \uplus B_2 B1 bagunion B2

oz only � B_1 \buni B_2 B1 ++ B2
items s items s items s

A.2.12 Binding

LATEX ZSL
�
S \theta S theta S

A.2.13 Selection

LATEX ZSL
S � x S.x S.x

A.2.14 Operators

LATEX ZSL
PreSym PreSym _ PreSym _
InSym _ InSym _ _ InSym _
PostSym _ PostSym _ PostSym
 	 	 � _ \limg _ \rimg _ (| _ |)

ZTC 2.1 User’s Guide October 2002

Index
A

\also, 9, 10, 11
� � � mathematical symbols, 5
associativity, 19
axdef environment, 8, 8, 10

B
bars

horizontal
double, 13
length, 13
single, 13

vertical, 13
box style, 4

C
\comm, 10
command line option, 26
comment

LATEX, 9
comment, 10

D
decoration

LATEX, 7
ZSL, 13

\def, 20
document, 7

E
end spec, 14
end specification, 14

F
flying-erase mode, 26
formal environments, 8
formal text

LATEX, 8
ZSL, 14

G
gendef environment, 8, 8, 10

I
identifier

LATEX, 7

ZSL, 13
\ignore, 21
\null-token, 21
\include, 12
include, 17
indentation, 12
infix relational symbol, 20
informal text

LATEX, 10
ZSL, 14

infun, 19
ingen, 19
\input, 12
input, 17
input form, 3

LATEX, 1, 3, 5–12
ZSL, 1, 3, 13–17

box style, 4
plain text style, 3

inrel, 19
\inrel, 20
installation, 28–29

Linux, 29
Windows/MS-DOS, 29

L
LATEX, 5
LATEX macro, 20, 23
LATEX preamble, 6
liberal, 23
liberal mode, 22, 26
line continuing command, 11

M
math0, 26
mathematical toolkit library, 26

N
\newcommand, 20
newsgroup, 1
nocheck, 10

O
Object-Z, 5
oz native mode, 5
oz package, 1, 5–6

43

Index 44

incompatibility, 5
oz-zed compatible mode, 5

P
paragraph

axiom box, 8, 15
box, 14
equivalence definition, 9
free types, 9
generic box, 8, 15
given set, 9
non-box, 14
predicates, 9
schema box, 8, 15
schema definition, 9

plain text style, 3
pragma, 18
pregen, 19
prerel, 19
priority, 19

R
redefine given set, 24
registration, 30
Rel, 20
\remark, 10

S
schema environment, 8, 10
separator

LATEX, 10
ZSL, 16

spec, 7, 14
specification, 14
strict, 23
stroke character, 7, 13
subscription

LATEX, 7
ZSL, 13

syntax environment, 8, 9, 11

T
TAB (character), 16
TAB command, 11
\tn, 11
type information, 24

\typeof, 24
type report, 27

\typeof, 24

U
user-defined symbol, 18

generic, 19
infix function, 19

associativity, 19
priority, 19

relational, 19

V
verbose, 25
verbosity, 25, 27

W
word, 19

LATEX, 7
ZSL, 13

World-Wide-Web, 1

Z
zed environment, 8, 9, 11
zed mode, 5
zed package, 1, 5–6

incompatibility, 5
ZSL, 1
ztc package, 6

ZTC 2.1 User’s Guide October 2002

