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It is already known that power in multimarker transmission/disequilibrium tests may improve

with the number of markers as some associations may require several markers to be captured.

However, a mechanism such as haplotype grouping must be used to avoid incremental com-
plexity with the number of markers. 2G, a state-of-the-art transmission/disequilibrium test,

implements this mechanism to its maximum extent by grouping haplotypes into only two

groups, high and low-risk haplotypes, so that the test has only one degree of freedom regardless

of the number of markers. The test checks whether those haplotypes more often transmitted
from parents to o®spring are truly high-risk haplotypes. In this paper we use haplotype simi-

larity as prior knowledge to classify haplotypes as high or low risk ones and start with those

haplotypes in which the prior will have lower impact i.e. those with the largest di®erences
between transmission and non-transmission counts. If their counts are very di®erent, the prior

knowledge has little e®ect and haplotypes are classi¯ed as low or high risk as 2G does. We show

a substantial gain in power achieved by this approach, in both simulation and real data sets.
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1. Introduction

Genome-wide association studies (GWASs) using polymorphic nucleotide markers

have as their main goal the identi¯cation of new genetic factors conferring individual

susceptibility to complex diseases. Case/control studies may yield in°ated false

positives due to population strati¯cation and admixture. Moreover, haplotype

reconstruction can be inaccurately inferred because there are not familial genotypes.

Therefore, tests using more than one marker usually are based on genotypes1�3

instead of haplotypes, and power may also be reduced as well. To overcome this

issue, we use an alternative group of tests, which require nuclear families and

compare di®erences in transmitted and non-transmitted haplotype counts from

parents to a®ected o®spring. The simplest test of this group, the Transmission/

Disequilibrium Test (TDT),4 is de¯ned for a binary marker and considers that under

the null hypothesis of no association or linkage, the only di®erence in the number of

times an allele is transmitted or not should be due to random sampling. Therefore,

the statistic is de¯ned for heterozygous parents as:

TDT ¼ ðnT � nUÞ2
nT þ nU

; ð1Þ

with nT being the number of times one of the alleles is transmitted by a parent to the

o®spring and nU the number of times it is not transmitted (i.e. the parent transmits

the other allele). The statistic follows a �2 distribution with one degree of freedom

(df) under the null hypothesis of no association or linkage.

TDT-based GWASs using only one marker at a time have revealed to be a very

powerful approach to discover new genetic factors related to a trait when they are in

allelic association��� linkage disequilibrium ��� with an underlying risk allele (as long

as it has a high relative risk to the trait). However, most complex diseases are

polygenic traits which appear as a consequence of the interaction of several, maybe

thousand, genetic variants, most of them with modest or very small e®ects, as well as

the environment. This is the case of multiple sclerosis (MS)5 or diabetes type 2.6 In

this situation, the basic TDT [Eq. (1)] has not enough power to detect those genetic

factors with small relative risk, as it is a monomarker test. Di®erent generalizations

have been proposed to handle more than two markers and improve power.7�11

Perhaps the most intuitive multimarker generalization of TDT is mTDT 7,8:

mTDT ¼ k� 1

k

Xk

i¼1

ðniT � niU Þ2
niT þ niU

; ð2Þ

with k being the number of di®erent alleles/haplotypes and niT , niU being,

respectively, the number of times an allele/haplotype i is transmitted and non-

transmitted, considering only heterozygous parental genotypes. The measure has a

limiting �2 with k� 1 df (�2
k�1) under no linkage.19

However, the recent explosion of GWASs that are being performed has revealed

an important problem in multimarker association tests: a high di±culty to reproduce
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results when a di®erent data set is used.11 The problem intensi¯es with the number of

markers tested at a time and makes most of multimarker association tests useless for

more than two or three markers. This is a very discouraging result for the use of

multimarker tests, even if it is well known that power increases with them. The main

cause of this lack of test reliability is that they are built on methods that de¯ne an

alternative hypotheses that is sample dependent, so that power is overestimated, a

problem known as sample over¯tting in the Machine Learning ¯eld. In this situation

only very large samples would yield reliable results.

Solutions based on the distribution estimation of the results may be inaccurate.

Therefore, those performing a uniform correction of p-values as a function of the total

number of hypothesis, such as the the Bonferroni correction, perform an over-

correction, yielding very low power tests. As an example, the number of di®erent

tests in the simple TDT applied using binary markers is 2m, withm being the number

of biallelic markers. Other less-strict corrections such as the stepwise procedures12

consider the outcome of all the tests and not only the number of tests to reject an

hypothesis. Thus, they compute a corrected p-value considering all raw p-values.

However, they may be poorly applied i.e. the number of hypothesis is under-

estimated, as when the overall hypothesis is tested by evaluating a complex structure

of many other hypothesis,13 so that false positive results due to sample over¯tting

will translate into a lack of test reproducibility when a di®erent data set is used.14

A simple approach to overcome the issue of sample over¯tting is to use multiple

sampling to assess statistical signi¯cance. Therefore, in its simplest modality, called

holdout, in which the data set is split into two parts, one to build the model/

hypothesis and the other to compute the statistic, the test has the same df than when

using another approach but only half of the data set. Although power will decrease

due to a reduction in the sample size used to compute the statistic, the model built

using half of the sample will ¯t to the other half only in the case of true association, as

data used to build a model (for mTDT the model is de¯ned just with a set of

haplotypes present in a data set), are never used to test it.15 Therefore, this approach

is simple and provides a highly reproducible solution, as associations found are

mostly due to real associations and not to false positive results because of multiple

testing.

Another problem of many multimarker tests such as mTDT [Eq. (2)],

mTDTS
8,16 ��� a score-based method that modi¯es mTDT to follow an exact �2

k�1
distribution under the null��� or other tests alike, is that df increases with the number

of markers, so that their power is downwardly a®ected.9,11 A common solution is to

group haplotypes based on di®erent criteria, such as ancestral proximity of haplo-

types17 or haplotype similarity.9,13,14,18

Reduction in df is led to its maximum when they do not change with the number

of markers. This is the approach of TDT1,
19 a �2

1 multimarker test which checks

di®erences in transmissions between the haplotype with the largest di®erences and

the rest of haplotypes. The test is very powerful in the case of no mutation occurring

from the non-recombinant haplotype with the disease variant. Another �2
1 test
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regardless the number of markers, 2G,15 improves power of TDT1 by removing the

assumption that the non-recombinant haplotype has never mutated. Therefore,

instead of building a null hypothesis of no association for one risk haplotype, it tests

the hypothesis of no association for the set of all risk haplotypes. 2G outperforms

TDT1 because it allows more complex models while keeping the same df as TDT1. The

model may represent multiple founders for a risk variant and more than one risk

variant descending from the founder haplotype because of mutation/recombination.

Similar ideas have been proposed for case/control or discordant-sib-pair studies but

members of a risk group are in those studies not composed of haplotypes but of

genotypes.1�3

Although 2G outperforms TDT1 in power, low frequent haplotypes are highly

unreliable and may reduce power. If several markers are used at a time, to disregard

low frequent haplotypes is not a choice, as many haplotypes have very low counts.

Thereby we would end up with very few data and thus a signi¯cant power reduction,

close to the power of TDT1, as the most recent mutations/recombinations from a

high-risk haplotype (which usually have very low counts) that are still in association

with the disease will be disregarded because of their low counts.

In this work we propose to use a method, 2GTree, which modi¯es 2G by using the

most reliable haplotypes to be classi¯ed as low- and high-risk haplotypes as prior

information to compute the probability of the more ambiguous haplotypes to be

high/low-risk ones. We assume that haplotype similarity (which at its maximum is

called identity by state, IBS) means genetic similarity (which at its maximum is

called identity by descend, IBD) so that given a haplotype i the most similar hap-

lotype to it, j, is the one with the shortest time to their most recent common ancestor

(MRCA): tMRCAði; jÞ < tMRCAði; j 0Þ8j 0 2 f1; . . . ;n; j 0 6¼ i; j 0 6¼ jg and therefore it

has a higher probability of being also a non-recombinant haplotype with the trait

variant if j is considered to be a non-recombinant haplotype with the trait variant

(a high-risk haplotype). Consequently, it favors models in which haplotype trees

built on them show a low entropy i.e. haplotype branches are mostly composed of

haplotypes belonging to the same low/high-risk group.

In Sec. 2 we give a detailed de¯nition of the algorithm 2GTree and describe the

data, simulated and real ones, used to test the algorithm. We show results in Sec. 3.

Conclusions are provided in Sec. 4.

2. Methods

Before describing 2GTree, we ¯rst describe 2G, as our proposal, 2GTree, is a

modi¯cation of it.

2.1. Overview of 2G

As the number of di®erent haplotypes exponentially increases with the number of

markers while sample sizes do not increase accordingly, 2G tries to keep power by
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collapsing haplotypes. Therefore, 2G always divides a data set into two groups: high-

risk haplotypes (g1) and low-risk haplotypes (g2). For the test to be highly powerful,

neither homozygous parents or those parents with both haplotypes in the same group

are used. Consequently, haplotypes in the same group are being considered equiv-

alent since the test relies on the strong assumption of all haplotypes in a group having

similar Relative Risk, RR ¼ �
1�� for group g1, and

1
RR ¼ 1��

� for group g2, and � being

the probability for a parental genotype with one haplotype in each group of trans-

mitting the haplotype in g1 to the o®spring. Under the null hypothesis of no

association or linkage, RR is 1, so that � is 0:5 in both groups.

There may be two possible explanations for having more than one high-risk

haplotype. One is that all high-risk haplotypes share a common ancestor that

mutated or was in linkage disequilibrium with a mutation associated with the trait

under study. The other is that there may be more than one mutation at a genetic

locus in association with a disease from which current haplotypes may have derived

from, a situation known as founder heterogeneity.20

Even if the assumption of same relative risks may not be true in most of the

populations, its simplicity compensates the accuracy of the assumption. Thereby

it causes the test to especially outperform the other tests whenever the length of

the haplotypes increases. Thus, while most of the tests increase model com-

plexity (df) with the haplotype length and become powerless because of a limited

sample size, 2G has a constant model complexity (df) regardless of the haplotype

length.

Given groups g1 and g2 have been made up, the statistic is de¯ned as:

2G ¼ ðng1g2 � ng2g1Þ2
ng

; ð3Þ

with ng ¼ ng1g2 þ ng2g1 being the total amount of parental heterozygous genotypes

with one haplotype in each group. The test is a McNemar test following a �2
1 dis-

tribution under the null hypothesis of no linkage or association.15

Among the k
2

� � ¼ kðk�1Þ
2 di®erent ways to make up groups g1 and g2 from a set of k

di®erent haplotypes, it is straightforward to show which is the solution achieving the

largest power. In fact, this solution de¯nes the groups by considering as high-risk

haplotypes (g1) those with more transmitted haplotypes in the population i.e.

�i > 1=2, and as low-risk haplotypes (g2) those with more non-transmitted haplo-

types in the population i.e. �i < 1=2, with �i being the probability for a haplotype hi

of being transmitted. 2G uses this criterion:

gðhiÞ ¼
g1 if �i > 1=2

g2 if �i < 1=2

; if �i ¼ 1=2;

8><
>: ð4Þ

and estimates �i by using the maximum likelihood estimator (MLE) ~�i ¼ niT

niTþniU
.
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To avoid the problem of sample over¯tting, which increases with k, 2G uses the

holdout approach. Thus, a data subset used to choose the best hypothesis, the

training data set does not share any genotype with the data subset used to assess

statistical signi¯cance, the test data set.

The number k of di®erent haplotypes exponentially increases with the number of

markers. Therefore, for the test to be applied on a window of a few markers, many

haplotypes in the test data set will not be found in groups g1 or g2. In this situation, a

group will be assigned to a haplotype hi by using the following criterion:

hi 2
g1 if sMðhi; g1Þ > sMðhi; g2Þ
g2 if sMðhi; g2Þ > sMðhi; g1Þ;

�
ð5Þ

with sMðhi; gxÞ;x 2 f1; 2g being de¯ned as the similarity between hi and the

haplotype in gx most similar to hi. In the case of same similarity to both groups, a

group is randomly chosen. As similarity measure, 2G uses the length measure,9,13

which equals the largest number of consecutive markers with matching alleles and

which is also used in mTDTLC and mTDTSR.
9 As an example for 4-snp-long haplo-

types of biallelic markers 1010 and 1111, the length measure is 1, as the largest strand

of matching alleles has size 1. Thus, there are two strands of size 1: the one with only

the ¯rst allele (1) and the one with only the third allele (1). In a second example, the

length measure between haplotypes 1101 and 1111 is 2, as there is only one strand of

size 2 composed of the two former alleles: 10.

2.2. 2GTree

In this section we introduce 2GTree, a Bayesian modi¯cation of 2G which, in order to

compute the probability of a haplotype of being a high-risk one, it considers as prior

knowledge how similar it is to other high-risk haplotypes. 2GTree assumes IBS

means IBD as prior knowledge. In general, to obtain prior knowledge, it assumes that

haplotype similarity implies genetic linkage.

Under the null hypothesis of no association or linkage, the random variable Xij

representing the number of times a heterozygous parent with haplotypes fhi;hjg
transmits hi to their o®spring, follows a binomial distribution with parameters

ðNij; 1=2Þ, with Nij being the number of heterozigotic parents with haplotypes fhi;

hjg in the sample. Therefore, since Xij and Xik are independent for any k 6¼ j,

Xi ¼
P

j 6¼i Xij is binomial with parameters ðNi; �iÞ, being Ni ¼
P

j 6¼i Nij and

�i ¼ 1=2. Therefore, every situation with �i 6¼ 1=2 for any Xi means an alternative

hypothesis of association or linkage holds. Most of the multimarker TDTs, including

mTDT and 2G, use the fact that for large samples, 2Xi is normal with mean and

variance Ni and thus the square root of Yi,

Yi ¼
ðXi �NiÞ2

Ni

; ð6Þ

is standard normal and Yi is �
2
1.
16
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Our intention is to use a Bayesian approach to estimate �i in the training sample

as the expectation of �i with respect to the posterior probabilities:

�̂i ¼ Epð�ijDÞð�iÞ ¼
Z

�ipð�i jDÞd�i; ð7Þ

with D being the data set, so that hi will be assigned to a group by using the same

criterion as 2G [see Eq. (4)] but a Bayesian estimator �̂i of �i.

As Xi is a binomial distribution with parameters ðNi; �iÞ, we can assume the prior

distribution for �i is a Betað�1; �2Þ distribution21 which will have �1 ¼ �2 in the case

we believe the null hypothesis is true. Thereby, the larger the di®erence between �1

and �2, the larger the prior knowledge against the null hypothesis.

To obtain the hyperparameters �1; �2 for the Beta distribution, 2GTree uses

information about haplotype similarities assuming the coalescence model with no

recombination22 since only a small number of consecutive markers are used.23

Therefore it assumes all haplotypes descend from a common ancestor without

recombination and they make up a haplotype tree, which have haplotypes at its

nodes. A haplotype tree can be seen in Fig. 1. Similarity between haplotypes trans-

lates into a shorter distance between their respective nodes in the haplotype tree.

In the case of haplotypes with no di®erences in transmissions, the prior has a large

e®ect and the haplotype will be assigned to the group to which the most similar

Fig. 1. Resulting haplotype tree built by 2GTree (Algorithm 1). Nodes in green represent low-risk
haplotypes (g2) and nodes in light yellow represent high-risk haplotypes (g1). An arc between nodes a and b

has been weighted by the length measure among the nodes connected.
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haplotype belongs to. When di®erences increase, the prior decreases its e®ect on the

posterior probability of a haplotype to be a low or a high-risk haplotype.

2GTree ¯rst sorts all di®erent haplotypes hi; i ¼ 1 . . . k by descending e®ect

di®erence eðhiÞ in a training data set, measured as:

eðhiÞ ¼
ðniT � niU Þ2
niT þ niU

; ð8Þ

and for each haplotype hi following this ordering criterion, it applies Eq. (4) to decide

the group it belongs to. To make this decision, it estimates �i by using its Bayesian

estimator �̂i [Eq. (7)] instead of the MLE ~�i used by 2G. The purpose of sorting

haplotypes by descending e®ect di®erence is to start by those haplotypes with less

uncertainty about to which group they belong to. Thus, there will be more chances of

a right decision at the former haplotypes and therefore, this information, which is

used as a prior for the remaining haplotypes, will also increase chances of a right

decision in the following haplotypes. Hyperparameters �i1 and �i2 are chosen for

each haplotype by considering the current composition of groups g1 and g2 and by

using the following rule:

�i1 ¼
�=2 if jg1j ¼ 0 or jg2j ¼ 0

�=4þ ð�=2Þri otherwise;

�

with jgxj;x ¼ 1; 2 being the number of haplotypes in group gx, ri ¼ n1ðhiÞ
n1ðhiÞþn2ðhiÞ and

nxðhiÞ;x 2 f1; 2g being de¯ned as the number of haplotypes in group gx with the

maximum similarity to hi among all the haplotypes in g1 [ g2:

nxðhiÞ ¼
X

maxðsM ðhi;g1Þ;sM ðhi;g2ÞÞ
simðhi ;hjÞ¼

hj2gx

nj;

nj ¼ njT þ njU and simða; bÞ being the similarity between haplotypes a and b. The

intuition is to consider a largest prior probability to the group with a largest number

of haplotypes with minimum distance to the one we are considering. ri represents the

proportion of haplotypes in group g1. Therefore, both groups will have the same prior

probability (ri ¼ 0:5; �i1 ¼ �i2) if both groups have the same number of haplotypes

with minimal distance. In the extreme i.e. when there are no haplotypes in a group

with minimal distance, r ¼ 1; �i1 ¼ 3�i2 if sMðhi; g1Þ > sMðhi; g2Þ as it means that

n2ðhiÞ ¼ 0, and r ¼ 0; �i2 ¼ 3�i1 in the case sMðhi; g1Þ < sMðhi; g2Þ, as it means that

n1ðhiÞ ¼ 0.

The hyperparameter � ¼ �i1 þ �i2; 8 i ¼ 1; . . . ; k has been set to 2.21 The hyper-

parameter �, sometimes called \precision," can be regarded as an equivalent sample

size for the prior knowledge.21 We chose it to be 2 so that a wrong prior will have a

small e®ect in the ¯nal power unless the sample size is really small. We considered

di®erent sample sizes in our experiments from 125 trios to 1000 and even with the

shortest data sets a wrong prior translated into very slight power decay of 2GTree

compared with 2G (data not shown). In the case of at least a group being empty, a
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Betað1; 1Þ will be assumed so that every parameter in the likelihood distribution

pðD j �Þ � BinðNi; �Þ will have the same prior probability.

Figure 2 shows the Beta distributions used when: (1) sMðhi; g1Þ > sMðhi; g2Þ:
Betað1:5; 0:5Þ (top plots) so that there are larger prior support for haplotype hi to

belong to group g1, (2) there are no haplotypes in at least one of the groups:

Betað1; 1Þ (left middle plot) so that there are not any prior knowledge about the

probability of haplotype hi to belong to a group (uniform distribution) and (3)

sMðhi; g2Þ > sMðhi; g1Þ: Betað0:5; 1:5Þ (remaining plots) so that there are larger prior

support for haplotype hi to belong to group g2.

As the Betað�i1; �i2Þ distribution is the conjugate of the binomial distribution

Binðn1ðhiÞ; �Þ, the posterior probability is a Betað�i1 þ n1ðhiÞ; �i2 þ n2ðhiÞÞ distri-
bution and the Bayesian estimate of �i computed as the expectation of �i: �̂i [Eq. (7)]

has a close form solution 21:

�̂i ¼
�i1 þ niT

�i1 þ �i2 þ niT þ niU

: ð9Þ

Equations (4) and (9) are applied by 2GTree for all the haplotypes so that at each

step a new haplotype will be added to a group. Table 1 shows the grouping strategy

of 2GTree in pseudocode.

For each haplotype window i ¼ 1; . . . ;m, 2GTree requires to loop over the 2n

haplotypes in the sample to compute niT and niU , the starting point of its grouping

strategy (see Table 1), as well as 2G, mTDT , mTDTS and TDT1 do. To group

haplotypes, it requires also to loop over the k di®erent haplotypes found (it has to be

noted that k << n even for haplotype windows of several markers due to linkage

disequilibrium) in order to compute eðhiÞ, a measure required as well as input data

by the grouping strategy. The ¯rst step in the grouping strategy (sorting haplotypes

by eðhiÞ) is known to be Oðk log kÞ by the quicksort algorithm. The third and last

time-consuming step requires to compute the length measure among all haplotypes

already assigned to a group, so that s� kðk� 1Þ=2 operations, s being a constant

(window size), will be performed. Therefore, 2GTree will have as time complexity

upper bound Oðmðnþ k2ÞÞ, the same as mTDTS or, if we take into account k << n,

we just have simply OðmnÞ as the upper bound for 2G, 2GTree,mTDT ,mTDTS and

TDT1 algorithms.

Table 2 shows an example of an input array built from all the heterozygous

parents of a training data subset arti¯cially generated. The second column shows the

transmission counts of each di®erent haplotype hi in the training data set, the third

column shows the non-transmission counts and the four column shows the e®ect

di®erence eðhiÞ. Table 3 sorts Table 2 by descending e®ect di®erence (fourth column)

and add other columns with results that were required by the grouping strategy of

2GTree: niT þ niU (column 5), closest haplotypes in current g1 (column 6), closest

haplotypes in current g2 (column 7), sMðhi; g1Þ (column 8), sMðhi; g2Þ (column 9), ri

Increasing Power by Using Haplotype Similarity

1250014-9



Fig. 2. Di®erent Beta ð�1; �2Þ distributions, �1 þ �2 ¼ 2. Left column from top to bottom: �1 values are
1:5; 1 and 0:5. �1 ¼ 1 is used when there is no prior knowledge about the group a haplotype should belong

to. �1 ¼ 1:5 and �1 ¼ 0:5 is used when a haplotype is a priori considered as belonging to group g1, g2,

respectively, because of similarity. Right column from top to bottom: �1 values are 1:4; 0:8 and 0:6. The
larger the di®erence j�1 � �2j, the larger the prior evidence for the haplotype to belong to the group

gx;x 2 f1; 2g with the greatest �x.
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Table 1. 2GTree grouping strategy in pseudocode.

Input data: a k� 4 array A with a row for each

di®erent haplotype and four columns:
c1: haplotype value hi,

c2: niT ,

c3: niU ,

c4: e®ect di®erence: eðhiÞ
Output data: a list g1 of high-risk haplotypes

and a list g2 of low-risk haplotypes

Algorithm:
1 Sort rows of array A by descending order of column 4

2 alpha 2

3 For each row ri in A; i ¼ 1 . . . k

4 alpha1 0:25� alpha

5 if g1 6¼ ; and g2 6¼ ; then
6 hi  ri½1�
7 niT  ri½2�
8 niU  ri½3�
9 n1 0

10 n2 0
11 sim1 sM ðhi; g1Þ
12 sim2 sM ðhi; g2Þ
13 maxSim maxðsim1; sim2Þ
14 For each row rj in A; j ¼ 1 . . . i� 1

15 if (rj 2 g1 and simðri; rjÞ ¼¼ maxSim) n1 n1þ 1

16 if (rj 2 g2 and simðri; rjÞ ¼¼ maxSim) n2 n2þ 1

17 ri  n1=ðn1þ n2Þ
18 alpha1 alpha1þ r
19 alpha2 alpha� alpha1

20 theta ðalpha1þ niT Þ=ðalpha1þ niT þ alpha2þ niU Þ
21 if ðtheta > 0:5Þ g1  g1 [ hi

22 if ðtheta < 0:5Þ g2  g2 [ hi

Table 2. An example of an array with haplotype counts
required by 2GTree to build groups g1 and g2. Counts

must come from the heterozygous parents in the training

data subset.

Haplotype niT niU eðhiÞ
AbC 13 7 1.8

aBC 5 15 5
ABC 4 4 0

ABc 9 14 1.09

abc 24 3 16.33

aBc 12 3 5.4
abC 2 13 8.07

Abc 11 21 3.13
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(column 10), �i1 (column 11), �i2 (column 12), �̂i (column 13) and the ¯nal group the

haplotype belongs to (column 14).

The haplotype tree which summarizes the steps conducted by 2GTree to build

the groups is shown in Fig. 1. The most frequent haplotype hi with �̂i 6¼ 0 is con-

sidered the root of the tree, and is the ¯rst haplotype added to a group. The

haplotype with largest similarity (largest length measure) is considered the closest

ancestor of a haplotype. In case of a tie, the haplotype in the same group is chosen. If

all the most similar haplotypes are in the other group, the most frequent haplotype

is chosen.

Once groups g1 and g2 have been made up with the training data set, 2GTree has

no di®erences with 2G in the way the test is computed by using the test data set.15

Therefore, each haplotype hi in the test data set is assigned to a group by computing

the function gðhiÞ and the statistic in Eq. (3).

2.3. Simulation studies

We have drawn haplotype samples of 500 familial trios under di®erent standard

con¯gurations to check type-I errors under strati¯ed and admixture populations and

power.9,18 In general, it means di®erent haplotype lengths and di®erent frequencies of

common allele variants. For testing type-I errors, it means two strati¯ed populations

with di®erent proportions among them (1=2; 1=4 and 1=6Þ and di®erent minor allele

frequencies for one of the two subpopulations (0:1; 0:3 and 0:5) and 0:5 always for the

other. For testing power, it means we considered scenarios with one and two disease

susceptibility loci under di®erent genetic models (additive, recessive and dominant

for one locus; additive, recessive-or-recessive, dominant-or-dominant, dominant-and-

dominant, threshold and modi¯ed for two loci).

However, we introduced several di®erences.11,15 For both studies (population

strati¯cation/admixture and power) we considered a wide range of haplotype

lengths, 1; 2; 5; 10; 15 and 20. The studies above referred9,18 only used one or two

markers or sometimes three but as it has been said, the problem of model over¯tting

increases with the number of markers. Moreover, in the power study, we reduced

relative risks to more realistic values 1:2; 1:6; 2:0; 2:4 and 2:6. Populations were

generated assuming the now standard coalescent approach.22 The power study was

enlarged by a locus-speci¯city study so that instead of testing a set of markers at one

of the disease susceptibility locus (recombination fraction � ¼ 0) we also considered

an increase in � ¼ 0:00005; 0:0001; 0:00015; 0:0002, in the way used in other

works.10,11 To increase sample reproducibility, all the tests were applied under the

holdout approach, in which for each data set, 250 trios were randomly chosen to learn

the model (the training data set) and 125 were randomly chosen to assess statistical

signi¯cance i.e. to obtain p-values (the test data set). The same length measure 9,13

was used in all of them in order to assign haplotypes in the test data set to the models

learned with the training data set.15 A detailed description of the way simulations

were performed can be seen at the supplementary website.
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2.4. Real data

To test power, we have chosen nine di®erent risk loci in which SNPs in association

with a complex disease or in strong linkage disequilibrium have been reported, one of

them related with Crohn disease24 and the others with MS.26 The Crohn data set

(Crohn-a®ected) is a publicly available set that was originally used in 2001.25 It

consists of the genotype data of 103 SNPs typed in 129 trios with o®spring having

Crohn's disease.24 The phenotype is the presence/absence of Crohn disease. The

SNPs span across 500 kilobases at the IBD5/SLC22A4 locus (5q31), and the region

contains 11 known genes. For MS disease, genotype information was obtained from a

GWAS performed by the International Multiple Sclerosis Genetic Consortium with

334,923 SNPs in 931 family trios with a®ected o®spring.26

To test speci¯city, we need data sets with all the family members being unaf-

fected. To do that, we have used the same nine risk loci but family trios and their

genotypes were obtained from the 30 Caucasian nuclear families (CEPH) used at

Phase II of the International HapMap Project (IHMP).27 For comparative purposes,

and considering that di®erent arrays were used for genetic sequencing in the data sets

with a®ected o®spring and in the IHMP data sets, we followed a procedure which

mainly selected those markers present in both a®ected-o®spring and IHMP data sets

used for each risk loci.15

To reconstruct haplotypes from genotypes required to apply TDT or any of its

generalizations, we used the common family-plus-E-M strategy,9,18,28 in which family

information is ¯rst used and, in those loci still unsolved, the E-M algorithm is used.

Phasing errors are very unusual when using this method, as most positions are

inferred without errors by using familial data.

To guarantee sample reproducibility, all the tests were applied under the holdout

approach, in which for each data set, half of the trios were randomly chosen to learn

the model (the training data set) and the other half were used to assess statistical

signi¯cance i.e. to obtain p-values (the test data set).

3. Results

We have compared 2GTree with some state-of-the-art multimarker TDTs: mTDT ,

mTDTS ��� a score modi¯cation of mTDT 16 to guarantee that it asymptotically

follows an exact �2
k�1 under the null hypothesis of no linkage ���, mTDT1 and 2G.

We have chosen these tests because they have shown to be powerful tests with

computational complexity lineal to the number of founders and the number of SNPs.

As an example, mTDTS , the slowest one, has upper bound time complexity

Oðmðnþ k2ÞÞ,m being the number of windows being analyzed, n the sample size and

k the number of di®erent haplotypes in a window, with k� n even for windows of

several consecutive markers due to linkage disequilibrium. Therefore they are

a®ordable to be used as tests to detect risk variants in GWASs. Other tests, such as

the Length Contrast Test,9 or the Signed Rank Test9 have less power under a wide
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range of scenarios and have computational complexity quadratic on the number of

founders.15

By using simulations we ¯rst have shown that 2GTree is robust to population

structure and admixture. Thus, Table 4 shows that type-I error rates are very close

to the nominal � value used to reject the null hypothesis under di®erent scenarios

used to simulate population structure and admixture.

Once we have shown the test has the correct behavior under the null hypothesis of

no linkage, even in the case of population structure and admixture, we have com-

pared association rates between the state-of-the-art multimarker TDTs under a wide

range of scenarios. Figure 3 shows results for haplotypes of length 20 and two disease

susceptibility loci under the additive, dominant-and-dominant and recessive-or-

recessive genetic models and nominal level � ¼ 0:05. Results for all the other con-

¯gurations can be seen in Figs. S1 to S15 at the supplementary web site. As it can be

observed in all the plots, 2GTree usually has the highest association rates at � ¼ 0 i.e.

the highest sensitivity rates (power), followed by 2G. Moreover, the test is also locus-

speci¯c, so that association rates experience a strong decay when recombination

factor � increases. This means that 2GTree will discriminate better between causal

variants and those in linkage disequilibrium with them. Overall, and focusing on

haplotypes of width 20 to make di®erences more clear, 2GTree outperforms in power

(average sensitivity values from 100 data sets) 31 out of the 45 di®erent scenarios all

Table 4. Type-I error rates in presence of population strati¯cation
and admixture.

� MAFs pp l= 1 l= 5 l= 10 l= 15 l= 20

0.01 0.1 0.5 0.01 0.01 0.01 0.01 0.01
0.01 0.3 0.5 0.01 0.01 0.01 0.01 0.01

0.01 0.5 0.5 0.01 0.01 0.01 0.01 0.01

0.01 0.1 0.75 0.01 0.01 0.01 0.01 0.01

0.01 0.3 0.75 0.01 0.01 0.01 0.01 0.01
0.01 0.5 0.75 0.01 0.01 0.01 0.01 0.01

0.01 0.1 0.833 0.01 0.01 0.01 0.01 0.01

0.01 0.3 0.833 0.02 0.01 0.01 0.01 0.01

0.01 0.5 0.833 0.02 0.01 0.01 0.01 0.01

0.05 0.1 0.5 0.06 0.05 0.05 0.05 0.04

0.05 0.3 0.5 0.06 0.05 0.06 0.05 0.05
0.05 0.5 0.5 0.04 0.05 0.04 0.05 0.05

0.05 0.1 0.75 0.06 0.05 0.05 0.06 0.06

0.05 0.3 0.75 0.06 0.04 0.06 0.06 0.05

0.05 0.5 0.75 0.06 0.05 0.05 0.07 0.06
0.05 0.1 0.833 0.06 0.05 0.05 0.05 0.05

0.05 0.3 0.833 0.06 0.05 0.06 0.05 0.05

0.05 0.5 0.833 0.05 0.05 0.06 0.06 0.06

Note: Results for di®erent minor allele frequencies (MAFs) in the

second subpopulation (q) and di®erent proportion of trios from the
¯rst subpopulation (pp), obtained by 2GTree for nominal levels

� ¼ 0:01 and � ¼ 0:05 and haplotypes of length 1, 5, 10, 15 and 20

(columns 4 to 8 respectively).
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the other algorithms, 2G outperforms 8 out of 45 the other algorithms, TDT1 only

wins once (one-locus recessive model at relative risk 1:2) and 2G and 2GTree have 5

ties out of those 45 scenarios (see Table 5).

The same pattern can be seen when using real data sets. Figure 4 shows power

results in sliding window maps (window size 15 and o®set 1) for IL7R (a) and IL2R

(b) locus, respectively. It is interesting to note that (1) 2GTree reaches the highest

(a) (b)

(c)

Fig. 3. Association rates under the holdout approach using a second data set to test reproducibility.
Results for 100 simulations of 250þ 125 family trios as a function of the recombination rate using the (a)

two-loci additive, (b) dominant-or-dominant and (c) recessive-or-recessive genetic models and haplotypes

of length 20. A nominal level of � ¼ 0:05 and a relative risk of 1:6 were used for all plots. Results for

mTDT , mTDTS , mTDT1, 2G and 2GTree are plotted in purple circles, blue triangles, green squares red
diamonds and orange crosses, respectively.
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association at the windows with the highest y-axis values, i.e. windows containing

truly risk markers or markers in strong linkage disequilibrium with them (windows

on the left in these plots) and (2) in other windows, i.e. windows that may show some

degree of association just because of some extent of linkage disequilibrium, 2GTree

is usually more monotonic and not the one with the highest association values. These

results may respectively indicate that the test is (1) more powerful than the others

and (2) more locus-speci¯c as well. Figures S16 to S21 at the supplementary web site

(a) IL7R-A®ected (b) IL2R-A®ected

Fig. 4. Sliding window maps for the IL7R (a) and IL2R (b) a®ected data set. Window size is 15. TDTs
used were 2GTree (orange crosses), 2G (red diamonds), mTDT1 (green squares), mTDT (purple circles)

and mTDTS (blue triangles).

Table 5. Summary of power results for haplotypes of length 20.

Algorithm 1 locus 2 loci A 2 loci B Total

mTDT 0 0 0 0

mTDTS 0 0 0 0
mTDT1 1 0 0 1

2G 2 3 3 8

2GTree 11 10 10 31

Tie 2G-2GTree 1 2 2 5
Total 15 15 15 45

Note: Table cells show the number of times an algorithm has the
largest power among all the algorithms used. All the scenarios

above referred have been considered. Results are displayed by

genetic models: one disease locus (column two), two disease loci A
(additive, dominant-or-dominant and recessive-or-recessive genetic

models) (column three) and two disease susceptibility loci B

(dominant-and-dominant, threshold and modi¯ed genetic models)

(column four).
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show sliding windows for power and speci¯city results for all the data sets used.

Figures S22 to S27 use comparative TDT (CTDT) maps29 instead.

We have also shown that 2GTree is computationally a®ordable as a genome-wide

association test, as it has lineal complexity to the number of positions to be analyzed,

m, and the sample size n, with upper bound Oðmðnþ k2ÞÞ. As k << n even for

haplotype windows of several markers due to linkage disequilibrium, we can simplify

its complexity in terms of m and n to be OðmnÞ.

4. Conclusion

We have introduced a Bayesian approach to improve 2G,15 an algorithm to select loci

in association with a disease by analyzing the genome of a set of nuclear families,

a®ected o®spring and their parents. The 2G algorithm is a very simple, e±cient and

highly reproducible multimarker Transmission/Disequilibrium method. Its simpli-

city is the cause of its high reproducibility, as it classi¯es haplotypes into only two

groups: high- and low-risk haplotypes. However, power may decrease in presence of

rare haplotypes. The measure presented in this work, 2GTree, uses a Bayesian

approach so that prior knowledge is introduced in order to estimate the probability

for an haplotype to be low or high risk. The prior knowledge is based on haplotype

similarity, by assuming that the more similar the haplotypes are among them, the

more recent their common ancestor is. Moreover, those haplotypes with more cer-

tainty about the group they belong to are the ones used to decide about the prior

knowledge for those with higher uncertainty.

Simulation and real studies have shown that 2GTree usually reaches the same

power as 2G does and many times it outperforms 2G. Those situations where power

does not increase compared with 2G or it is sightly lower, may correspond to a wrong

prior assumption. However, consequences in the ¯nal posterior distribution are small

and power keeps very close to the one obtained by 2G.

We believe the proposed algorithm may be very helpful in genome-wide associ-

ation studies. Although 2G and 2GTree converge with sample size, for small samples

2GTree may make a di®erence and help to discover causal variants in complex

diseases. It may be especially important with the ¯rst data sets genotyped by using

the next-generation sequencing technology, as the number of genotyped individuals

may be small. The 2G technique is crucial as a method to choose and reduce the

number of input variables when building genome-wide predictors of individual risk to

complex diseases.30,31 The improvement of 2GTree may be very important as well to

increase the overall accuracy of these genetic predictors.

Web resources

A supplementary website has been created for this work at http://bios.ugr.es/

2GTree, where Figs. S1�S27, the real data sets used, the software trioSample11

implemented to obtain the samples upon which simulations were performed (scripts

M. M. Abad-Grau et al.
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for linux and software in c++) and 2GTree, the software used to implement the

method, are available.
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