
EUROGRAPHICS 2003 / J. Flores and P. Cano Interactive Demos & Posters

A Spatial Representation for Ray-Scene Intersection Test
Improvement in Complex Scenes

J. Revelles, N. Aguilera, J. Aguado, M. Lastra, R. García, R. Montes

Dpt. Lenguajes y Sistemas Informáticos, E.T.S.I. Informática, University of Granada, Spain
e-mail: [jrevelle,mlastral,ruben,rosana]@ugr.es

URL: http://giig.ugr.es

Abstract
We present a spatial representation based on a hierarchical structure using the well-known technique of octree
as spatial indexing. There are very useful spatial representations for scenes whose objects can be distributed
in clusters. Our proposed spatial representation is quite interesting for scenes that satisfy the previous objects
distribution. In order to prove its benefits, several results are shown in scenes using a rendering algorithm to
compute the global illumination based on photon map. These results show that the hierarchy of octrees becomes a
good choice to improve it, taking into account the performances with other strategies such as octrees and hierarchy
of uniform grids3.

Keywords: Acceleration techniques, ray casting, spatial
indexing methods.

1. Introduction

When a scene needs to be rendered, an algorithm based on
ray-casting to compute the global illumination may be used.
Mainly, these algorithms or methods will require a lot of
time for ray-scene intersection test process. In order to im-
prove the performance of this process, that is, to minimize
the necessary time to compute the ray-scene intersection test,
several techniques are available. These techniques are based
on some kind of spatial indexing on the scene domain.

In this way, several spatial indexing techniques have been
proposed as efficient strategies such that octrees2 � 5 � 4 � 11, 3D
grid1 � 2, and BSPtree9 � 13 � 8. These spatial representations are
even useful for different scenes, that is, objects with several
sizes and with non-homogeneous distribution of them. In
each space indexing a process which simulates a ray travers-
ing this structure must be available. Therefore, Havran pre-
sented a good work comparing spatial representations and
their algorithm to traverse them7.

These spatial representations are proposed to accelerate
the main process, that is, the ray-scene intersection test in a
rendering system when a ray-casting based method is used.
However, when the scene is very complex (many thousands

of objects) both memory usage and rendering time could be
too expensive. Another problem by the user is that not only
on the rendering process but on the acceleration technique
applied, several parameters must be fixed.

Due to the above reasons, a rendering system must con-
tain several efficient techniques to accelerate the ray-scene
intersection test. Moreover, the parameters required to build
an specific spatial representation for a given scene must be
easy to fix by the user. For this reason, in most of the cases a
previous analysis for a given complex scene is required.

In this way, this paper shows the previous work in section
2. In this section several spatial representations which satisfy
the above requirements are shown. In section 3 a new spatial
representation is proposed. In order to show the acceleration
technique performances which are proposed, several scenes
have been rendered and analysed. A comparative timetable
with the results are shown in section 4. In these results both
memory usage and rendering time (illumination computa-
tion process) were considered. Finally, the conclusions and
future works are presented.

2. Previous Work

There are two main aspects when a scene is rendered using
a rendering system:

c
�

The Eurographics Association 2003.



J. Revelles et. al / A Spatial Representation for Ray-Scene Intersection Test Improvement in Complex Scenes

� Fix the necessary parameters in order to get a realistic
image.

� For a given complex scene, fix an acceleration technique
and the parameters required in order to increase its perfor-
mances.

First step only depends on the rendering algorithm used.
This problem may be considered on a second instance. The
main problem is to select the best spatial representation to
improve the most costly process when a scene is managed.
When the mentioned spatial representation is selected, other
problem derived from it is to look for the best values to
initialize the parameters involved in it. In this case, several
works were proposed6 � 12 for special cases of spatial repre-
sentations.

In addition, a relevant contribution to solve this problem
in complex scenes was introduced by Cazals et al.3. In that
paper the authors proposed a new strategy to manage com-
plex scenes in a rendering system which increased the per-
formances of the ray-scene intersection test process. The
proposed work was based on a regular grid and it was called
hierarchy of uniform grids (HUG ).

The main advantage of the strategy was because of dis-
tribution of objects in groups which are called clusters. In a
first step, a filtering process of the input objects by size is
done. Next, a clustering step to objects which are the same
size is applied, and finally a hierarchy of regular grid is built
for each cluster. In those terms, our spatial representation can
be also used in these scenes because of the performances in
runtime execution are increased.

The spatial representation which is proposed is based
on the same philosophy of work proposed by Cazals. The
unique different between the Cazals method and our method
is that an octree is built for each cluster instead of a regular
grid.

3. The Hierarchy of Octrees as Spatial Representation

We introduce a spatial representation which can be seen as
a hierarchy of octrees (HOO ). Using the same advantages
of clustering process proposed by Cazals, the unique diffe-
rent is in the third step, that is, an octree is applied for each
cluster.

The process to construct a hierarchy of octrees is descri-
bed as follows:

1. The clustering algorithm3 is used in a first step.
2. For each cluster, an octree is constructed.
3. Group two clusters neighbours into a bounding box (this

process continues until a balanced binary tree represent-
ing the whole scene is obtained).

An example of a scene which a spatial representation
based on a HOO may be applied is shown in figure 1. In
this scene seven clusters will be obtained. For each cluster,

Figure 1: Scene grouped in 7 clusters.

an octree is built allocating all scene objects in this cluster
(see figure 2).

Figure 2: Octrees applied for each cluster.

In some cases, a scene can not be pierced into clusters
because of the clustering algorithm do not find the existing
number of clusters (in most cases, the whole scene could
be matched as a unique cluster). In this situation, other con-
siderations must be taken into account to use these spatial
representations.

When the scene is feasible to split it in clusters, the fo-
llowing advantages are reached using a HOO :

� The spatial representation requires less memory usage
than a simple spatial representation for the whole scene
(i.e. using a regular grid or an octree).

� The performances increase when a greater space between

c
�

The Eurographics Association 2003.



J. Revelles et. al / A Spatial Representation for Ray-Scene Intersection Test Improvement in Complex Scenes

clusters occurs. These performances are obtained compa-
ring HOO and an octree.

� Finally, a HOO provides better result than a HUG as it is
shown in section 4.

The main disadvantage of a HOO or an HUG consists in
the required time used in the clustering process. However,
the clustering algorithm has a linear increase in relation to
the number of objects.

4. Results

In order to show the performances of the proposed spatial
representation, two comparisons and scenes have been pro-
posed to do:

� Comparisons between HOO and octree (scene shown in
figure 3). This scene is composed of two clusters. One of
them is shown in figure 4).

� Comparisons between HOO and HUG.

All of results are obtained using a Pentium 4 processor
with 1GB of RAM. The rendering algorithm is one based in
global illumination by photon map10. The time considered
is only related to illumination computation. The irradiance
computation time is not taken into account. In the above

Figure 3: Scene with two clusters and a greater space be-
tween them.

Figure 4: Cluster of the above scene described as an array
of 8 � 8 � 8 cubes.

scene, there are two clusters with a great division between
them. Each clusters consists of an array of 8 � 8 � 8 cubes

with an extended light source over it. Each cube has 12 tri-
angles (it will be the maximum number of objects allocated
in a leaf node for an octree). The scene objects are triangles.
In order to build an octree for one cluster considering 12 ob-
jects per leaf node, the maximum depth level of it will be 3.
Nonetheless, when both clusters are considered to construct
a unique octree, the maximum depth level would become 10
as it is considered in this case. Therefore, the memory re-
quirements for a unique octree are larger than a HOO (see
table 1). The gain of HOO is because of the necessary time

Octree HOO

10 Depth level 3

1147 Illumination Time (in seconds) 139

Gain percentage 87%

Table 1: Octree vs. Hierarchy of Octrees.

to traverse the internal nodes in the octrees until a leaf node
is reached. In this case, it is very easy to determine the max-
imum depth level for both spatial representations. When this
value is hard to fix, a good measure to compare the perfor-
mances of them is when the memory amount in both spatial
representations are similar. Therefore, a spatial representa-
tion based on a HOO has better results than an octree. The
performances are greater when the clusters are more spaced
out between them.

In order to compare HUG with HOO, a scene with 10
clusters is proposed (see figure 5). This scene has 50000

Figure 5: Scene with 10 clusters (9 teapots and the floor).

triangles including the floor. All the triangles have a simi-
lar size. In order to build a spatial representation based on
a HUG or HOO, the number of clusters is 10. The render-
ing algorithm used is photon map with 1000000 photons per
light source.

The results are shown in table 2. Octree depth level and
subdivisions in regular grid are fixed to get spatial represen-
tations with similar memory usage in both cases. In these
terms, the hierarchy based on an octrees presents better times
than it is based on a regular grid.

c
�

The Eurographics Association 2003.



J. Revelles et. al / A Spatial Representation for Ray-Scene Intersection Test Improvement in Complex Scenes

HOO HUG
depth level Time % Time Subdivisions

4 64.55 21% 81.23 13

5 52.19 35% 80.10 21

6 48.73 39% 80.26 29

7 48.74 39% 80.35 37

8 49.35 38% 79.34 45

9 49.97 38% 80.51 53

Table 2: Hierarchy of Octrees vs. Hierarchy of Regular
Grids.

The gain in percentage displays results between 21% and
39% according to the times obtained in table 2.

At this point, it is feasible that when the input objects
are quite greater and the rendering algorithm parameters are
more accurate (in order to get images with the best quality)
the gains will be similar.

5. Conclusions and Future Effort

In this paper we have introduced a spatial representation for
very complex scenes. It is based on the same principles pro-
posed in a previous work3 but using octrees instead of regu-
lar grid. So, this work has similar advantages and disadvan-
tages than HUG.

The main contribution of this spatial indexing consists
of it has less memory requirements obtaining better gains
in terms of execution time for the illumination computation
process as it is displayed in the obtained results.

A good results must be obtained for cluster oriented
scenes. The gain is increased when great distances between
clusters exist.

As a future work, we will study the benefits of this spa-
tial representation for more complex scenes and for different
clusters distributions. In addition, we will study the impor-
tance of the space between clusters to study better the im-
provements that it would offer.

Acknowledgments

Special thanks to Carlos Ureña and Luis Miguel Vílchez for
their contributions to this work. This work has been sup-
ported by a grant coded as TIC2001-2932-C03-03 (Spanish
Commission for Science and Technology).

References

1. J. Amanatides and A. Woo. A fast voxel traversal algo-
rithm for ray tracing. In EUROGRAPHICS’87, pages
3–10, Amsterdam, 1987.

2. J. Arvo and D. Kirk. A Survey of Acceleration Tech-
niques, chapter chapter 6. An Introduction to Ray Trac-
ing, pages 201–262. Academic Press, San Diego, 1989.

3. F. Cazals, G. Drettakis, and C. Puech. Filtering, clus-
tering and hierarchy construction: A new solution for
ray-tracing complex scenes. In EUROGRAPHICS’95,
pages 371–382, 1995.

4. R. Endl and M. Sommer. Classification of ray-
generators in uniform subdivisions and octrees for ray
tracing. Computer Graphics Forum, 13(1):3–20, 1994.

5. A.S. Glassner. Space subdivision for fast ray tracing.
IEEE Computer Graphics & Applications, 4(10):15–
22, 1984.

6. J. Goldsmith and J. Salmon. Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graph-
ics & Applications, 7(5):14–20, 1987.

7. V. Havran. Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineer-
ing, Faculty of Electrical Engineering, Czech Technical
University in Prague, 2001.

8. V. Havran and J. Bittner. Rectilinear bsp trees for pre-
ferred ray sets. In Proceedings of 14th Spring Con-
ference on Computer Graphics, Budmerice in Slovakia,
pages 171–179, 1999.

9. V. Havran, T. Kopal, J. Bittner, and J. Zara. Fast robust
bsp tree traversal algorithm for ray tracing. Journal of
Graphics Tools, 2(4):15–24, 1997.

10. M. Lastra, C. Ureña, J. Revelles, and R. Montes. A
particle-path based method for monte carlo density esti-
mation. In Eurographics Workshop on Rendering (short
paper) 2002, Pisa (Italy)., 2002.

11. J. Revelles, C. Ureña, and M. Lastra. An efficient para-
metric algorithm for octree traversal. Journal of WSCG
(Copyright UNION Agency-Science Press), 8(2):212–
219, 2000.

12. K.R. Subramanian and D.S. Fussell. Automatic ter-
mination criteria for ray tracing hierarchies. In Pro-
ceedings of Graphics Interface’91, pages 93–100, June
1991.

13. K. Sung. Ray Tracing with the BSP Tree, pages 271–
274. Academic Press, 1992.

c
�

The Eurographics Association 2003.


